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(\IVEI I Presolar Grains

Various Phases of Presolar Grains Are Known Today

@ Nanodiamonds: Only a few
million atoms
e Silicon Carbide (SiC)
o Best studied phase
o Extracted
o Graphites
o Large as well
e Tend to contain
significant contamination
o Silicates, oxides, etc.

e < lum in diameter
e Must be found in-situ

Reto Trappitsch (EPFL)
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Various Phases of Presolar Grains Are Known Today

Nanodiamonds: Only a few : i Silicate

million atoms

Silicon Carbide (SiC)
o Best studied phase
o Extracted

Graphites

o Large as well
e Tend to contain
significant contamination

o Silicates, oxides, etc.

e < lum in diameter
e Must be found in-situ

Nittler and Ciesla (2016)

Reto Trappitsch (EPFL) Presolar Grains March 13, 2023 3/36



Presoler Grains
The Best Studied Presolar Phase: Silicon Carbide (SiC)

d-units: Deviation from solar (%o)
Presolar grains identified by their extreme
isotopic composition

Classified by analyzing their Si, C, and N
isotopic composition

@ Carry their parent stars isotopic composition

@ Hands-on astrophysics samples

e Galactic chemical evolution

o Stellar nucleosynthesis

e Transport processes in the interstellar medium
Are you convinced that these grains come
from other stars?

Reto Trappitsch (EPFL) Presolar Grains

Definition:

5(;?) = [(i}(/jx)smp—l] % 1000

(X X)e

@ smp: Sample measured

@ ©: Solar composition
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Presolar Grains
The Best Studied Presolar Phase: Silicon Carbide (SiC)

@ J-units: Deviation from solar (%o) o MS (90%)
e . 200 % |
@ Presolar grains identified by their extreme ) ﬁél(g,,z) xi
isotopic composition Y (2%) 3
- _ o 0 -2 Z2%) g RS ...
o Classified by analyzing their Si, C, and N 3 NN (< 1%)
isotopic composition = 222
B —200
@ Carry their parent stars isotopic composition =
@ Hands-on astrophysics samples B 100 1
e Galactic chemical evolution
o Stellar nucleosynthesis 600
e Transport processes in the interstellar medium
@ Are you convinced that these grains come : - : -
—600 —400 -200 0 200
from other stars? 5(30Si/28S) (%o)
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The Best Studied Presolar Phase: Silicon Carbide (SiC)
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isotopic composition
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Why Presolar Grains are Intersti The s-process

Observations of Live 2°Tc in AGB Stars
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The s-process
Enhancements in ®Ru in Presolar Stardust (Savina+, 2004)

@ Ruthenium isotopic composition measured
in pm-sized SiC grains by RIMS

o Comparison with slow neutron capture
process models

o 101Ry/100Ry agrees with models
o 99Ru/%Ry elevated due to in-situ decay
of #Tc

o Measurements require in-situ decay of %°Tc

@ Proof that these grains come from AGB
stars (stars of class S)

o Many further measurements since

Reto Trappitsch (EPFL) Presolar Grains March 13, 2023 6/36



The s-process
Enhancements in ®Ru in Presolar Stardust (Savina+, 2004)

B —T T T T
0 ﬁl—
@ Ruthenium isotopic composition measured L 0% i
. . . . o :
in pm-sized SiC grains by RIMS — 200} c)oo -
@ Comparison with slow neutron capture a3 i &3# .
rocess models 3
P 101, /100 : ST 400} 0° .
o Y1Ru/Ru agrees with models S o0 :
o 99Ru/%Ry elevated due to in-situ decay 3 I .
of #Tc SE -600 .
o Measurements require in-situ decay of %°Tc © i P
. -800 [+ .
@ Proof that these grains come from AGB :
stars (stars of class S) I i
. -1000 L 1 L 1 L 1 L 1 L [
o Many further measurements since -1000 -800 -600 -400 -200 O

1045, 100
6 "Ru/ " Ru (%0)
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The s-process
Enhancements in ®Ru in Presolar Stardust (Savina+, 2004)

@ Ruthenium isotopic composition measured
in pm-sized SiC grains by RIMS

o Comparison with slow neutron capture
process models

o 101Ru/1%0Ry agrees with models
o 99Ru/%Ry elevated due to in-situ decay
of #Tc

o Measurements require in-situ decay of %°Tc

@ Proof that these grains come from AGB
stars (stars of class S)

o Many further measurements since
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The s-process
How Old are Presolar Grains? At Least 4.5 Billion Years!

12 T T T

. . . . . 0
@ Cosmic-rays in ISM irradiate presolar grain 10
@ Production of cosmogenic ?INe o
. . Zz 100
o Not expected to condense into grain 5
e Concentration ¢ can be measured 2 g 102 ]
e Production rate p can be calculated § 2
. " 5 £
e Exposure time t = ¢/p ?, g o
@ Heck et al. (2020): Measured cosmic ray £
exposure ages for 40 SiC grains = 104 il
P & g 2 10' 102 108
@ Most grains formed < 1 Ga prior to solar system Presolar #!Ne exposure age (Ma)
@ Some are several billion years old u
@ Ages likely dominated by destruction of grains b pr 000 3000I—
in |SM Presolar 2'Ne exposure age (Ma)
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Measurement Techniques SIIEIEN

Extracting Presolar Grains in the Laboratory

MURCHISON K | [/

Amari et al. (1994) HFMCI
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o Hardness: 9/10 *82'?6'7“”3 o
ity: -2 HCIO sediment ]
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@ Crush and freeze-thaw separation ml H l ml ~027~g M
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@ Remove Solar System phases by acid treatment
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Measurement Techniques Mounting and Mapping

Sample mounting and mapping

Samples are drop-deposited on ultra-clean
gold foil

Solution evaporates and SiC stays behind

Imaging by secondary electron microscopy

Phase detection by energy dispersive
X-rays

— Find the SiC grains

@ Create an overview map for navigation on
the sample

Reto Trappitsch (EPFL) Presolar Grains March 13, 2023 9/36
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Measurement Techniques Mounting and Mapping

Detection of SiC

NanoSIMS: Trappitsch-Dec-2022
measurement # as indicated

Reto Trappitsch (EPFL) Presolar Grains March 13, 2023



L
Nanoscale Secondary lon Mass Spectrometry (NanoSIMS)

@ Analyze the isotopic composition
of Si, C, N in SiC grains
(requires 7 detectors)

@ Secondary ions analyzed
— prone to isobaric interferences

@ Ideal instrument to measure
major isotopic composition

Reto Trappitsch (EPFL) Presolar Grains March 13, 2023 11/36



Cesium Source

Primary column
Electrostatic sector

Coupling

Coaxiale lens

Multicollection Magnetic sector

Courtesy: Florent Plane






Measurement Techniques

Trace element isotopic analyses

@ Resonance lonization Mass
Spectrometry (RIMS)

@ Most sensitive technique
available for atom-limited
samples

e Up to ~ 40% useful yield

@ Only two instruments worldwide
that analyze presolar grains

o LION at Lawrence Livermore
National Laboratory

e CHILI at the University of
Chicago

Reto Trappitsch (EPFL)

RIMS

Presolar Grains
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Measurement Techniques NIV

Trace element isotopic analyses

@ Resonance lonization Mass
Spectrometry (RIMS)

@ Most sensitive technique
available for atom-limited
samples

e Up to ~ 40% useful yield

@ Only two instruments worldwide
that analyze presolar grains

o LION at Lawrence Livermore
National Laboratory

e CHILI at the University of
Chicago

Reto Trappitsch (EPFL)

M accessible by RIMS

A RIMS Periodic Table

Li1Be]  mpublished RIMS studies B
Na [ Mg W published RIMS isotopic measurements Allsilp
K |Ca|Sc|Ti| V]| CrlMn|Fe|Co| Ni|Cu| Zn|Ga|Ge|As Kr
Rb|Sr|Y |Zr | Nb|Mo| Tc [Ru|Rh|Pd|Ag|Cd| In |Sn|Sb |Te Xe
Cs|Ba| * |Hf | Ta| W|Re|Os| Ir | Pt |Au|Hg| Tl | Pb|Bi | Po|At |Rn
Fr| Ra| **
*lLa|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tbh|Dy|Ho| Er |Tm|Yb| Lu
»|Ac|Th|Pa| U |Np|Pu|Am|Cm|Bk|Cf |Es |Fm|Md|No | Lr

Presolar Grains
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Measurement Techniques RIMS

An overview of Resonance lonization Mass Spectrometry (RIMS)

Target Extractor Focusing optics Reflectron

N

0 |

Detector plus optics

Ti:sapphire lasers
Reto Trappitsch (EPFL) Presolar Grains March 13, 2023
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Measurement Techniques RIMS

An overview of Resonance lonization Mass Spectrometry (RIMS)

lon pulse / Desorption pulse

Target /Extractor Focusing optics Reflectron

Detector plus optics

Ti:sapphire lasers
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Laser lonization of Neutrals /'




Measurement Techniques RIMS

Simultaneous Measurements of Iron and Nickel

100 4

Trappitsch et al. (2018)

Signal (arb)

54 56 58 60 62 64 66
Mass (amu)
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Measurement Techniques RIMS

Simultaneous Measurements of Iron and Nickel

Mass, calibrated for Ni (amu)
53 54 55 56 57 58 59 60 61 62 63 64 65

100 .
Trappitsch et al. (2018)

Signal (arb)
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< <

_

15}
&
L

H
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L

53 54 55 56 57 58 59 60 61 62 63 64 65 66
Mass, calibrated for Fe (amu)
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RIMS
Simultaneous Sr, Zr, and Mo analysis (Shulaker+, 2022)

Mass, Zr calibration (amu)
90 91 92 94 96

103 .

102 .

Counts (arb)

101 4

10° 4
84

Reto Trappitsch (EPFL)

86

87

88 92 94 95 96 97 98 100
Mass, Sr, Mo calibration (amu)
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Measurement Techniques RIMS

Limitations of Presolar Grain Measurements

1900 T T
I v
1700 1| c le
o Elemental Ratios: Highly dependent on ol Z
condensation environment e 5% {7
g=r -
o Elements of interest must condense into : €
presolar grain 100 N
o Condensation temperature? 200
o Refractory elements are more likely to composiion
. gas
condense than volatile ones ool F s
@ We must have a reasonable number of
atoms in the sample to analyze them 1000 ) .
2 8 -10

log total pressure (bar)

C-star condensation (Lodders and Fegley, 1999)
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RiMs
The Number of Atoms in a SiC Grain

e Mass m of a grain with density p and radius r
Example:
4 3
m=Vp= §7rr p

Most of mass is SiC with a molar mass of Mg;c = 40g/mol

Number of SiC atoms in grain (Na: Avogadro's number)

m B 4rrd3pNy

nsic = ——Na =
' Msic 3Msic

@ For a trace element with concentration ¢, (wt/wt) and molar
mass M,
my
my=c¢ccm — ny=Nyg—
M,

Reto Trappitsch (EPFL) Presolar Grains March 13, 2023 20 /36



_ Measurement Techniques IS
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RiMs
The Number of Atoms in a SiC Grain

e Mass m of a grain with density p and radius r
Example:
4 . . A _ . :
m= Vp — §7Tr3p S'C graln Wlth r 1 pm rad|us

nsic = 2 x 10

Most of mass is SiC with a molar mass of Mg;c = 40g/mol
Assume 10 ppm (wt/wt) Fe:

Number of SiC atoms in grain (Na: Avogadro's number)

npe = 1.4 x 10°
m B 4rrd3pNy ‘

nsic = ——Na =
' Msic 3Msic

@ For a trace element with concentration ¢, (wt/wt) and molar
mass M,
my
my=c¢ccm — ny=Nyg—
M,
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RIMS
The Number of Atoms in a SiC Grain

e Mass m of a grain with density p and radius r
Example:
4 . . A _ . :
m= Vp — §7Tr3p S'C graln Wlth r 1 pm rad|us

nsic = 2 x 10

Most of mass is SiC with a molar mass of Mg;c = 40g/mol
Assume 10 ppm (wt/wt) Fe:

@ Number of SiC atoms in grain (Na: Avogadro’'s number)
npe = 1.4 x 10°
m B 4rrd3pNy ‘
nsic = Msic A~ 3Msic Solar abundance of 58Fe:
0.282%
@ For a trace element with concentration ¢, (wt/wt) and molar
mass M, nssp, = 4014
- Ny
my = cxm ny = Na—
x X x A Mx
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Measurement Techniques RIMS

Beware of Contamination

@ Presolar Grains spent 4.5 Ga in meteorite

@ Extraction with harsh acids of “solar” composition 0
@ Isotopes ratios of the same element

e Simple mixing 3 —2001
o Contamination with Solar on straight line f;
. . N
@ lIsotopes ratios of different elements L 4004
e Potential mixing region gi
w

o Contamination curve depends on elemental
composition of sample ~600 13
e A more complicated case!

@ For SiC: Most contamination results from —800 1

—-800 -600 —400 -200

handling the samples in lab!
6(%6Zr/%4Zr) (%o)
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6(%°Zr/%4Zr) (%o)

~200
~400

—600 1

-800 {4t

—1000 T T T T
—1000 -800 -600 -—-400 -200

6(°2Mo/°®Mo) (%)
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6(%°Zr/%4Zr) (%o)

—200 A

—400 1

—600 1

—800 -
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Measurement Techniques NIV

Beware of Contamination

@ Presolar Grains spent 4.5 Ga in meteorite
@ Extraction with harsh acids of “solar” composition
@ Isotopes ratios of the same element

e Simple mixing
e Contamination with Solar on straight line

@ Isotopes ratios of different elements

e Potential mixing region
o Contamination curve depends on elemental

composition of sample
e A more complicated case!

@ For SiC: Most contamination results from
handling the samples in lab!

Presolar Grains

Reto Trappitsch (EPFL)

0 Tjmmmsemmmssemsmmsosocrcrmarsesesese
//’— ......
/
4
-2004 /[
1
- ]
S 1
X 1
= —4004 |
N 1
3 1
N i
& —6004 1 :
'S [
I
II (Molzr)sample
-800 A — 0.1
..... l
--- 10
—-1000 T T T T +
—-1000 -800 -600 -—400 -200 0
6(92Mo/°6Mo) (%o)
21/36
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Measurement Techniques NIV

Beware of Contamination

Reto Trappitsch (EPFL)

Presolar Grains spent 4.5 Ga in meteorite

Extraction with harsh acids of “solar” composition
Isotopes ratios of the same element

e Simple mixing

e Contamination with Solar on straight line
Isotopes ratios of different elements

e Potential mixing region

o Contamination curve depends on elemental

composition of sample

e A more complicated case!
For SiC: Most contamination results from
handling the samples in lab!

Presolar Grains

5**Ni/*®Ni) (%0)

1600

1400

1200

1000

800

600

400

200

CHILI
O Mainstream
U Unclassified
AB AB grains
Y Y grains
Z Zgrains
Mixing line
solar - AGB
Fe/Ni in grain:
— 0.1
— 0.5
— 1
—_— 2
3
4
5
10
20

-200 0 200 400 600

5C°Fe/**Fe) (%o)

Trapp!
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s-Process Nucleosynthesis
Asymptotic Giant Branch (AGB) Stars

@ Star expands rapidly, and cools

@ Cycles between H and He burning
— Thermally pulsing AGB star
@ AGB stars are copious dust producers
@ Slow neutron capture (s-) process
forms elements along the valley of
stability
e Two important neutron sources:
o 13C(a, n)te0O
o 22Ne(a, n)®Mg
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R ENTER WAL WAISI  s-Process Nucleosynthesis

Two Neutron Sources are at Work

Convective envelope

dredge-up

Mass —>»

S-process zone

Convective pulses

dredge-up

He intershell
P ittt
CO-Core Adopted from NuGrid Model
2Mg, Z,, Pignatari et al. (2016)
Time —»
RS

13C(a, n)16o

@ Main s-process neutron source

e Max < 10" ncm ™3

@ 1000s of years

22Ne(ar, n)?*Mg
@ Bottom of He intershell
@ Max 5 x 109 nem ™3

e A few years

March 13, 2023
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Hands-on Astrophysics

Where to Look in Presolar Grains

P RVIRPE Mo 93

14.53 | 4.0 ky

Nb 91 N Nb 92

42

s-Process Nucleosynthesis

40

Mo 94 | Mo 95 0 09 0 98 Mo 99
9.15 15.84 6 9.60 4.39
(NN EM| Nb 94 Nb 96 || Nb 97 || Nb 98
100. 20.4 ky
9.4d
Zr 91 Zr 92 Zr 93 ‘ Zr 95 96 Zr 97
P 11.22 17.15 1.61 My 64d " 80 ““kes
| 0.29 My
|| Y 90 Y 91 Y 92 Y 94 Y 95 Y 96
52 54 56 n

Reto Trappitsch (EPFL)
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R ENTER WAL WAISI  s-Process Nucleosynthesis

Who wins: Neutron Capture or 5~

@ Branching ratio f,

f, = Ai—xg
@ Neutron capture rate

An = Npvr (o) -
@ [ -decay rate

In(2)

g =
7 Ti/2

Reto Trappitsch (EPFL)

-Decay

1.0

9N 1~ !
Mo
08f !
I
1
I
0.6 |
I
1
04} 1
1
1
L I
0.2 !
1
I
0.0k
1.0F 108 107 10° 10° 10 10'" 102
N, (cm?
0.8F n ( )
06
0.4} —0.5x10° K
——1.0x10°K
——2.0x10°K
0.2p 3.0x10°K
—4.0x1o: K
00 ! ! ——5.0x10°K

N, (cm™) N, (cm™)

Presolar Grains
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[RELTER WA AT WAl s-Process Nucleosynthesis

Deciphering the Parent Star Conditions with Stardust Measurements
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@ Heavier-mass stars get hotter Q
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— Activate ?©Zr production more g 3 1
e Additional complication: Nuclear physics g't‘ of solary
input uncertainties, e.g., Zr(n, 7) cross  © | 1
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o Comparison of isotope with stardust
measurements allows determination of 400 b
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[RELTER WA AT WAl s-Process Nucleosynthesis

Deciphering the Parent Star Conditions with Stardust Measurements
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Deciphering the Parent Star Conditions with Stardust Measurements
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[RELTER WA AT WAl s-Process Nucleosynthesis

Multi-Element Measurements to Constrain the 3C-Pocket

Three-zone_models Zone-Il models
e i | PR P
@ Presolar grains allow us to probe the T e
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individual grains can help to decipher the £ ool 1 ]
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See Nan Liu et al. (20xx)

Liu et al. (2015)
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Cassiopeia A: Si, S, Ca, I+, (NASA/CXC/SAO)



[RENTER WIS WATSI Supernova Nucleosynthesis

Supernova Ejecta Mixing: What Regions do we Probe with Presolar Grains?

CCSN zones
-2 o 9 Fy s
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; . ; : ;
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s Al
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10—6 4
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1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Mass coordinate (My)
@ How does material mix in the supernova ejecta? It's already complicated in 1D!
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[RELTERN WA WETSIl Supernova Nucleosynthesis

Short-Lived Radionuclides: Timing Grain Condensation

@ Short-lived radionuclides allow to
determine the speed of condensation

o ®V-Ti: > 2a (Liu et al., 2018)
o 137Cs-137Ba: ~ 20a (Ott et al., 2019)
o Of course, these results are
model-dependant!

@ Multiple stable isotope ratios have been
determined as well

@ Presolar grains from supernovae are very
rare

Supernova grains are currently vastly
understudied!

500
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Hands-on Astrophysics Galactic Chemical Evolution

The Curious Case of GCE Dominated Isotopes in Presolar Grains

200
@ Mainstream SiC grains: from low-mass stars
@ Star does not contribute to Si isotopic 150
composition —~ 100
o Certain isotopes are thus great proxies for GCE s 0
. . . . —~ 5
o GCE predicts enrichment of 29Si and 3°Si over @
. . &
time in ga|a>.<y. . @ 0
Age-metallicity relation R
. . - 20¢c: ‘o _50
@ Presolar grains however are enriched in <?Si and
30Sj compared to Solar System -100F ° o .
| Presolar grain database
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Hands-on Astrophysics Galactic Chemical Evolution
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Hands-on Astrophysics Galactic Chemical Evolution

The Curious Case of GCE Dominated Isotopes in Presolar Grains
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Hands-on Astrophysics Galactic Chemical Evolution

Other Isotopes show the Same Behavior compared to the Solar System

CHARISMA f f f f ‘ !
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100/ AB AB grains _|
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H 29¢g; S 50| Y Ygrains -
correlate with <*Si g M
. . ~ - —GCE QT

e Enrichments in L2 — Fit Mainstream .
54Fe and %ONi g o
found as well = N5,

o Age-metallicity 501 TN -
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Trappitsch et al. (2018)
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Hands-on Astrophysics Galactic Chemical Evolution

Many Explanation Attempts Over the Years

The problem is twofold:
o Slope of Si correlation > 1
e Enhancement in secondary
Stellar migration (Clayton, 1997)
— Range too small

29,30g;;

Presolar galactic merger (Clayton, 2003)

Stochastic/heterogeneous GCE (Lugaro et

al., 1999, Nittler, 2005)
— Ti data does not agree

Dust production bias (Lewis et al. 2013)
— Slope difficult to explain

Overarching 2°Si problem! (Timmes and
Clayton, 1996)
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Hands-on Astrophysics Galactic Chemical Evolution

Many Explanation Attempts Over the Years

@ The problem is twofold: AT Saring Componiion PSi1.5
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Hands-on Astrophysics Galactic Chemical Evolution

Many Explanation Attempts Over the Years
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Hands-on Astrophysics Galactic Chemical Evolution
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Hands-on Astrophysics Galactic Chemical Evolution

Influence of Nuclear Reaction Rates for Si Production/Destruction

o
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Presolar Grains

HungKwan

Fok (Brandeis University)
NuPyCEE GCE

simulations show differences
between yield sets

Si mostly produced in massive stars

Look at influence of nuclear reaction rate
uncertainties on overall yield (production
and destruction of Si)

Plug back into GCE model
Example of 2°Mg(a, n) x3 shows
enhancement in 2Si and 3°Si
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Hands-on Astrophysics Galactic Chemical Evolution

Influence of Nuclear Reaction Rates for Si Production/Destruction
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Hands-on Astrophysics Galactic Chemical Evolution

Influence of Nuclear Reaction Rates for Si Production/Destruction
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Where to Go From Here?

@ Presolar grains allow us to directly probe stellar
nucleosynthesis in the laboratory
o Allows us to study

o Nucleosynthesis
o Galactic Chemical Evolution
o Interstellar Medium

@ Isotopic information is unique

Another Messenger to Elucidate our
Understanding of Nuclear Astrophysics!

det mag HV  spot WD dwell HFW 1pm
ETD 75 382 x 30.00 kV 5.0 10.9 mm 15 us 3.40 pm Presolar Grain
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Thank You! Questions?

E P:: L Brandeis University: HungKwan Fok

EPFL / UniL: Stéphane Escrig, Cristina Martin Olmos,
Ui/ Anders Meibom, Florent Plane

UNIL | Universi té de Lausanne

Lawrence Livermore National Laboratory: Barbara
randeis Allen (Wang), Jutta Escher, Jason Harke, Richard
UNIVERSITY Hughes, Brett Isselhardt, Wei Jia Ong, Mike Savina, Ziva

B Lawrence Livermore Shulaker, Peter Weber
National Laboratory 4 University of Chicago / The Field Museum for

THE UNIVERSITY OF Natural HiStOI’y: Andy Davis, Phlllpp Heck, Mike Pellin,
CHICAGO Thomas Stephan

@ Konkoly Observatory Marco Pignatari
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