Presolar Grains Odd Ones Out in the Solar System

Reto Trappitsch Laboratory for Biological Geochemistry

March 13, 2023

EPF

Southern Ring Nebula (Credit: NASA, ESA, CSA, and STScI)

Various Phases of Presolar Grains Are Known Today

- Nanodiamonds: Only a few million atoms
- Silicon Carbide (SiC)
 - Best studied phase
 - Extracted

Graphites

- Large as well
- Tend to contain significant contamination
- Silicates, oxides, etc.
 - $\bullet~<1\,\mu m$ in diameter
 - Must be found in-situ

NATURE VOL. 326 12 MARCH 1987

LETTERS TO NATURE

Interstellar diamonds in meteorites

Roy S. Lewis*, Tang Ming*, John F. Wacker*‡, Edward Anders* & Eric Steel†

Presolar Grains

Various Phases of Presolar Grains Are Known Today

- Nanodiamonds: Only a few million atoms
- Silicon Carbide (SiC)
 - Best studied phase
 - Extracted
- Graphites
 - Large as well
 - Tend to contain significant contamination
- Silicates, oxides, etc.
 - $\bullet~<1\,\mu\text{m}$ in diameter
 - Must be found in-situ

Presolar Grains

Presolar Grains

Various Phases of Presolar Grains Are Known Today

- Nanodiamonds: Only a few million atoms
- Silicon Carbide (SiC)
 - Best studied phase
 - Extracted
- Graphites
 - Large as well
 - Tend to contain significant contamination
- Silicates, oxides, etc.
 - $\bullet~<1\,\mu m$ in diameter
 - Must be found in-situ

Nittler and Ciesla (2016)

The Best Studied Presolar Phase: Silicon Carbide (SiC)

- δ -units: Deviation from solar (‰)
- Presolar grains identified by their extreme isotopic composition
- Classified by analyzing their Si, C, and N isotopic composition
- Carry their parent stars isotopic composition
- Hands-on astrophysics samples
 - Galactic chemical evolution
 - Stellar nucleosynthesis
 - Transport processes in the interstellar medium
- Are you convinced that these grains come from other stars?

Definition:

$$\delta\left(rac{^{i}\mathrm{X}}{^{j}\mathrm{X}}
ight) = \left[rac{(^{i}\mathrm{X}/^{j}\mathrm{X})_{\mathrm{smp}}}{(^{i}\mathrm{X}/^{j}\mathrm{X})_{\odot}} - 1
ight] imes 1000$$

- $\bullet \ {\rm smp:} \$ Sample measured
- \odot : Solar composition

The Best Studied Presolar Phase: Silicon Carbide (SiC)

- δ -units: Deviation from solar (‰)
- Presolar grains identified by their extreme isotopic composition
- Classified by analyzing their Si, C, and N isotopic composition
- Carry their parent stars isotopic composition
- Hands-on astrophysics samples
 - Galactic chemical evolution
 - Stellar nucleosynthesis
 - Transport processes in the interstellar medium
- Are you convinced that these grains come from other stars?

Presolar Grains

The Best Studied Presolar Phase: Silicon Carbide (SiC)

- δ -units: Deviation from solar (‰)
- Presolar grains identified by their extreme isotopic composition
- Classified by analyzing their Si, C, and N isotopic composition
- Carry their parent stars isotopic composition
- Hands-on astrophysics samples
 - Galactic chemical evolution
 - Stellar nucleosynthesis
 - Transport processes in the interstellar medium
- Are you convinced that these grains come from other stars?

Observations of Live ⁹⁹Tc in AGB Stars

SPECTROSCOPIC OBSERVATIONS OF STARS OF CLASS S

PAUL W. MERRILL MOUNT WILSON AND PALOMAR OBSERVATORIES CARBEGE INSTITUTION OF WASHINGTON CALIFORNIA INSTITUTE OF THEMPOLOOY Received February 27 1952

TABLE 2

INTENSITIES OF LINES AND BANDS

			А	BSORFII	N		Emission							
STAR	PLATE	ZrO	TiO	Ba 11	Low- Temp.	<i>Tc</i> 1	H	Fe 11	<i>М</i> £ 1	Si 1	In 1	Co 1		
R And	Ce 3522	8	3	5	8	4	10	3	2	3	3	2		
U Cas	Pc 127	7	7	5	Ğ	3	10	3	1	3	1	2		
HD 22649.	Pc 192	2	2	5	6	1	0	Ō	Ō	ō	Ō	ō		
R Gem	Pc 68	5	0	10	7	5	10	3	2	2	3	3		
S UMa	Pc 110	1	0	7	4	1	10	3	1	2	1	1		
T Sgr	Pc 124	7	0	7	5	3	10	3	2	3	4	3		
R Cyg	Pc 137	10	0	10	5	3	10	2	2	2	2	3		
AA Cyg	Pc 115	8	7	7	8	4	0	0	0	0	0	0		
Z Del	Pc 112	2	7	3	3	1	10	3	1	2	0	2		
χ Cyg	Ce 3762	5	20	3	10	- 3	10	3	2	5	4	2		
a Cet	∫Ce 4109	1	15	1	7	2	5	1	0	2	1	0		
0 000	Ce 5925	1	10	2	6	1	10	3	1	2	0	1		
R Hya	Ce 3390	1	15	3	7	1	7	3	1	3	0	1		
R Leo	Pc 40	0	20	1	10	0	10	4	4	6	3	0		

Enhancements in ⁹⁹Ru in Presolar Stardust (Savina+, 2004)

- Ruthenium isotopic composition measured in µm-sized SiC grains by RIMS
- Comparison with slow neutron capture process models
 - ¹⁰¹Ru/¹⁰⁰Ru agrees with models
 - 99 Ru/ 100 Ru elevated due to in-situ decay of 99 Tc
- Measurements require in-situ decay of ⁹⁹Tc
- Proof that these grains come from AGB stars (stars of class S)
- Many further measurements since

Enhancements in ⁹⁹Ru in Presolar Stardust (Savina+, 2004)

- Ruthenium isotopic composition measured in μm-sized SiC grains by RIMS
- Comparison with slow neutron capture process models
 - $\bullet~^{101} \text{Ru}/^{100} \text{Ru}$ agrees with models
 - 99 Ru/ 100 Ru elevated due to in-situ decay of 99 Tc
- Measurements require in-situ decay of $^{99}\mathrm{Tc}$
- Proof that these grains come from AGB stars (stars of class S)
- Many further measurements since

99D D D L C L L (C

Enhancements in ⁹⁹Ru in Presolar Stardust (Savina+, 2004)

- Ruthenium isotopic composition measured in μm-sized SiC grains by RIMS
- Comparison with slow neutron capture process models
 - ${}^{101}\text{Ru}/{}^{100}\text{Ru}$ agrees with models
 - 99 Ru/ 100 Ru elevated due to in-situ decay of 99 Tc
- Measurements require in-situ decay of ⁹⁹Tc
- Proof that these grains come from AGB stars (stars of class S)
- Many further measurements since

How Old are Presolar Grains? At Least 4.5 Billion Years!

- Cosmic-rays in ISM irradiate presolar grain
- Production of cosmogenic ²¹Ne
 - Not expected to condense into grain
 - Concentration *c* can be measured
 - Production rate p can be calculated
 - Exposure time t = c/p
- Heck et al. (2020): Measured cosmic ray exposure ages for 40 SiC grains
- $\bullet\,$ Most grains formed $< 1\,{\rm Ga}$ prior to solar system
- Some are several billion years old
- Ages likely dominated by destruction of grains in ISM

Extracting Presolar Grains in the Laboratory

- Silicon Carbide:
 - Hardness: 9/10
 - Density: $3.2 \,\mathrm{g}\,\mathrm{cm}^{-2}$
 - Verv acid resistant
- Crush and freeze-thaw separation
- Remove Solar System phases by acid treatment
- Density separation in heavy-liquids to isolate SiC

Finding the Needle in the Haystack by Burning Down the Hay

Sample mounting and mapping

- Samples are drop-deposited on ultra-clean gold foil
- Solution evaporates and SiC stays behind
- Imaging by secondary electron microscopy
- Phase detection by energy dispersive X-rays
 - \rightarrow Find the SiC grains
- Create an overview map for navigation on the sample

Sample mounting and mapping

- Samples are drop-deposited on ultra-clean gold foil
- Solution evaporates and SiC stays behind
- Imaging by secondary electron microscopy
- Phase detection by energy dispersive X-rays
 - \rightarrow Find the SiC grains
- Create an overview map for navigation on the sample

Detection of SiC

Reto Trappitsch (EPFL)

Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS)

- Analyze the isotopic composition of Si, C, N in SiC grains (requires 7 detectors)
- Secondary ions analyzed
 → prone to isobaric interferences
- Ideal instrument to measure major isotopic composition

Trace element isotopic analyses

- Resonance Ionization Mass Spectrometry (RIMS)
- Most sensitive technique available for atom-limited samples
- $\bullet~$ Up to $\sim 40\%$ useful yield
- Only two instruments worldwide that analyze presolar grains
 - LION at Lawrence Livermore National Laboratory
 - CHILI at the University of Chicago

Trace element isotopic analyses

- Resonance Ionization Mass Spectrometry (RIMS)
- Most sensitive technique available for atom-limited samples
- $\bullet~$ Up to $\sim 40\%$ useful yield
- Only two instruments worldwide that analyze presolar grains
 - LION at Lawrence Livermore National Laboratory
 - CHILI at the University of Chicago

Н	A RIMS Periodic Table														He		
Li	Be		 accessible by RIMS published RIMS studies published RIMS isotopic measurements 										С	Ν	0	F	Ne
Na	Mg												Si	Ρ	S	CI	Ar
κ	Са	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
Cs	Ва	*	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	т	Pb	Bi	Po	At	Rn
Fr	Ra	**															
		*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
		**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

after Savina and Trappitsch (2019)

Reflectron

Reflectron

Ti:sapphire lasers

Target Extractor Focusing optics Detector plus optics

Reflectron

Target Extractor Focusing optics Detector plus optics **Ti:sapphire lasers**

Presolar Grains

Reflectron

Reto Trappitsch (EPFL)

Target Extractor Focusing optics Detector plus optics

Reflectron

15 / 36

15 / 36

RIMS

Simultaneous Measurements of Iron and Nickel

Simultaneous Measurements of Iron and Nickel

Simultaneous Sr, Zr, and Mo analysis (Shulaker+, 2022)

Limitations of Presolar Grain Measurements

- Elemental Ratios: Highly dependent on condensation environment
- Elements of interest must condense into presolar grain
 - Condensation temperature?
 - Refractory elements are more likely to condense than volatile ones
- We must have a reasonable number of atoms in the sample to analyze them

C-star condensation (Lodders and Fegley, 1999)

19/36

The Number of Atoms in a SiC Grain

• Mass m of a grain with density ρ and radius r

$$m = V\rho = \frac{4}{3}\pi r^3\rho$$

• Most of mass is SiC with a molar mass of $M_{
m SiC}=40\,
m g/mol$

• Number of SiC atoms in grain (N_A: Avogadro's number)

$$n_{
m SiC} = rac{m}{M_{
m SiC}} N_A = rac{4\pi r^3
ho N_A}{3M_{
m SiC}}$$

• For a trace element with concentration c_x (wt/wt) and molar mass M_x

$$m_x = c_x m \quad \rightarrow \quad n_x = N_A \frac{m_x}{M_x}$$

Reto Trappitsch (EPFL)

Example:

The Number of Atoms in a SiC Grain

• Mass m of a grain with density ρ and radius r

$$m = V\rho = \frac{4}{3}\pi r^3\rho$$

Example: SiC grain with $r = 1 \,\mu$ m radius:

$$n_{
m SiC} = 2 imes 10^{11}$$

• Most of mass is SiC with a molar mass of $M_{
m SiC}=40\,
m g/mol$

• Number of SiC atoms in grain (N_A: Avogadro's number)

$$n_{
m SiC} = rac{m}{M_{
m SiC}} N_A = rac{4\pi r^3
ho N_A}{3M_{
m SiC}}$$

• For a trace element with concentration c_x (wt/wt) and molar mass M_x

$$m_x = c_x m \quad \rightarrow \quad n_x = N_A \frac{m_x}{M_x}$$
The Number of Atoms in a SiC Grain

• Mass m of a grain with density ρ and radius r

$$m = V\rho = \frac{4}{3}\pi r^3\rho$$

Example: SiC grain with $r = 1 \,\mu$ m radius:

$$n_{
m SiC} = 2 imes 10^{11}$$

Assume 10 ppm (wt/wt) Fe:

$$n_{
m Fe} = 1.4 imes 10^6$$

• Most of mass is SiC with a molar mass of
$$M_{
m SiC}=40\,
m g/mol$$

• Number of SiC atoms in grain (*N_A*: Avogadro's number)

$$n_{\mathrm{SiC}} = rac{m}{M_{\mathrm{SiC}}} N_A = rac{4\pi r^3
ho N_A}{3M_{\mathrm{SiC}}}$$

• For a trace element with concentration c_x (wt/wt) and molar mass M_x

$$m_x = c_x m \quad \rightarrow \quad n_x = N_A \frac{m_x}{M_x}$$

Reto Trappitsch (EPFL)

The Number of Atoms in a SiC Grain

• Mass m of a grain with density ρ and radius r

$$m = V\rho = \frac{4}{3}\pi r^3\rho$$

• Most of mass is SiC with a molar mass of $M_{\rm SiC} = 40 \, {\rm g/mol}$

• Number of SiC atoms in grain (N_A : Avogadro's number)

Example: SiC grain with $r = 1 \mu m$ radius:

 $n_{
m SiC} = 2 imes 10^{11}$

Assume 10 ppm (wt/wt) Fe:

 $n_{
m Fe} = 1.4 imes 10^6$

Solar abundance of $^{58}\mbox{Fe:}$ 0.282%

 $n_{58\rm Fe} = 4014$

• For a trace element with concentration c_x (wt/wt) and molar mass M_x

 $n_{\rm SiC} = \frac{m}{M_{\rm SiC}} N_A = \frac{4\pi r^3 \rho N_A}{3M_{\rm SiC}}$

$$m_x = c_x m \quad \rightarrow \quad n_x = N_A \frac{m_x}{M_x}$$

- Presolar Grains spent 4.5 Ga in meteorite
- Extraction with harsh acids of "solar" composition
- Isotopes ratios of the same element
 - Simple mixing
 - Contamination with Solar on straight line
- Isotopes ratios of different elements
 - Potential mixing region
 - Contamination curve depends on elemental composition of sample
 - A more complicated case!
- For SiC: Most contamination results from handling the samples in lab!

- Presolar Grains spent 4.5 Ga in meteorite
- Extraction with harsh acids of "solar" composition
- Isotopes ratios of the same element
 - Simple mixing
 - Contamination with Solar on straight line
- Isotopes ratios of different elements
 - Potential mixing region
 - Contamination curve depends on elemental composition of sample
 - A more complicated case!
- For SiC: Most contamination results from handling the samples in lab!

- Presolar Grains spent 4.5 Ga in meteorite • Extraction with harsh acids of "solar" composition Isotopes ratios of the same element • Simple mixing Contamination with Solar on straight line Isotopes ratios of different elements Potential mixing region Contamination curve depends on elemental composition of sample A more complicated case!
 - For SiC: Most contamination results from handling the samples in lab!

- Presolar Grains spent 4.5 Ga in meteorite
 Extraction with harsh acids of "solar" composition
- Isotopes ratios of the same element
 - Simple mixing
 - Contamination with Solar on straight line
- Isotopes ratios of different elements
 - Potential mixing region
 - Contamination curve depends on elemental composition of sample
 - A more complicated case!
- For SiC: Most contamination results from handling the samples in lab!

- Presolar Grains spent 4.5 Ga in meteorite
- Extraction with harsh acids of "solar" composition
- Isotopes ratios of the same element
 - Simple mixing
 - Contamination with Solar on straight line
- Isotopes ratios of different elements
 - Potential mixing region
 - Contamination curve depends on elemental composition of sample
 - A more complicated case!
- For SiC: Most contamination results from handling the samples in lab!

- Presolar Grains spent 4.5 Ga in meteorite
- Extraction with harsh acids of "solar" composition
- Isotopes ratios of the same element
 - Simple mixing
 - Contamination with Solar on straight line
- Isotopes ratios of different elements
 - Potential mixing region
 - Contamination curve depends on elemental composition of sample
 - A more complicated case!
- For SiC: Most contamination results from handling the samples in lab!

Trappitsch et al. (2018)

Asymptotic Giant Branch (AGB) Stars

- Star expands rapidly, and cools
- Cycles between H and He burning \rightarrow Thermally pulsing AGB star
- AGB stars are copious dust producers
- Slow neutron capture (*s*-) process forms elements along the valley of stability
- Two important neutron sources:
 - ¹³C(α, n)¹⁶O
 - ²²Ne(α , n)²⁵Mg

Two Neutron Sources are at Work

$^{13}\mathsf{C}(lpha, \textit{n})^{16}\mathsf{O}$

• Main s-process neutron source

March 13, 2023

- $Max < 10^7 \, n \, {\rm cm}^{-3}$
- 1000s of years

$^{22}\mathsf{Ne}(lpha, \textit{n})^{25}\mathsf{Mg}$

- Bottom of He intershell
- Max $5 \times 10^9 \, n \, \mathrm{cm}^{-3}$
- A few years

Where to Look in Presolar Grains

Who wins: Neutron Capture or β^- -Decay

• Branching ratio f_n

$$f_n = \frac{\lambda_n}{\lambda_n + \lambda_\beta}$$

• Neutron capture rate

 $\lambda_n = N_n v_T \langle \sigma \rangle$

• β^- -decay rate

$$\lambda_{\beta} = \frac{\ln(2)}{T_{1/2}}$$

Stephan et al. (2019)

- SiC grains can only condense in carbon-rich areas, with C>O
- Heavier-mass stars get hotter \rightarrow Activate ²²Ne neutron source more \rightarrow Activate ⁹⁶Zr production more
- Additional complication: Nuclear physics input uncertainties, e.g., $^{95}{\rm Zr}({\rm n},~\gamma)$ cross section
- Comparison of isotope with stardust measurements allows determination of parent stars

- SiC grains can only condense in carbon-rich areas, with C>O
- Heavier-mass stars get hotter \rightarrow Activate ²²Ne neutron source more \rightarrow Activate ⁹⁶Zr production more
- Additional complication: Nuclear physics input uncertainties, e.g., $^{95}{\rm Zr}({\rm n},~\gamma)$ cross section
- Comparison of isotope with stardust measurements allows determination of parent stars

26 / 36

- SiC grains can only condense in carbon-rich areas, with C>O
- Heavier-mass stars get hotter \rightarrow Activate ²²Ne neutron source more \rightarrow Activate ⁹⁶Zr production more
- Additional complication: Nuclear physics input uncertainties, e.g., $^{95}{\rm Zr}({\rm n},~\gamma)$ cross section
- Comparison of isotope with stardust measurements allows determination of parent stars

- SiC grains can only condense in carbon-rich areas, with C>O
- Heavier-mass stars get hotter \rightarrow Activate ²²Ne neutron source more \rightarrow Activate ⁹⁶Zr production more
- Additional complication: Nuclear physics input uncertainties, e.g., $^{95}{\rm Zr}({\rm n},~\gamma)$ cross section
- Comparison of isotope with stardust measurements allows determination of parent stars

- SiC grains can only condense in carbon-rich areas, with C>O
- Heavier-mass stars get hotter \rightarrow Activate ²²Ne neutron source more \rightarrow Activate ⁹⁶Zr production more
- Additional complication: Nuclear physics input uncertainties, e.g., $^{95}{\rm Zr}({\rm n},~\gamma)$ cross section
- Comparison of isotope with stardust measurements allows determination of parent stars

- SiC grains can only condense in carbon-rich areas, with C>O
- Heavier-mass stars get hotter \rightarrow Activate ²²Ne neutron source more \rightarrow Activate ⁹⁶Zr production more
- Additional complication: Nuclear physics input uncertainties, e.g., $^{95}{\rm Zr}({\rm n},~\gamma)$ cross section
- Comparison of isotope with stardust measurements allows determination of parent stars

Multi-Element Measurements to Constrain the ¹³C-Pocket

- Presolar grains allow us to probe the formation, size, and mass of the ¹³C-pocket
- Multi-element isotopic measurements in individual grains can help to decipher the physics
- Many possible ¹³C-pocket configurations can explain the measurements
- One set of model must fulfill all measurements constraints simultaneously

See Nan Liu et al. (20xx)

Liu et al. (2015)

Cassiopeia A: Si, S, Ca, Fe, X-rays (NASA/CXC/SAO)

Supernova Ejecta Mixing: What Regions do we Probe with Presolar Grains?

• How does material mix in the supernova ejecta? It's already complicated in 1D!

Short-Lived Radionuclides: Timing Grain Condensation

- Short-lived radionuclides allow to determine the speed of condensation
 - ${}^{49}V{}^{-49}Ti: > 2a$ (Liu et al., 2018)
 - 137 Cs $^{-137}$ Ba: \sim 20 a (Ott et al., 2019)
- Of course, these results are model-dependant!
- Multiple stable isotope ratios have been determined as well
- Presolar grains from supernovae are very rare

Supernova grains are currently vastly understudied!

Liu et al. (2018)

The Curious Case of GCE Dominated Isotopes in Presolar Grains

- Mainstream SiC grains: from low-mass stars
- Star does not contribute to Si isotopic composition
- Certain isotopes are thus great proxies for GCE
- GCE predicts enrichment of ²⁹Si and ³⁰Si over time in galaxy
 Age-metallicity relation
- Presolar grains however are enriched in ²⁹Si and ³⁰Si compared to Solar System

Presolar grain measurements require heterogeneous GCE

The Curious Case of GCE Dominated Isotopes in Presolar Grains

- Mainstream SiC grains: from low-mass stars
- Star does not contribute to Si isotopic composition
- Certain isotopes are thus great proxies for GCE
- GCE predicts enrichment of ²⁹Si and ³⁰Si over time in galaxy
 Age-metallicity relation
- Presolar grains however are enriched in ²⁹Si and ³⁰Si compared to Solar System

Presolar grain measurements require heterogeneous GCE

The Curious Case of GCE Dominated Isotopes in Presolar Grains

- Mainstream SiC grains: from low-mass stars
- Star does not contribute to Si isotopic composition
- Certain isotopes are thus great proxies for GCE
- GCE predicts enrichment of ²⁹Si and ³⁰Si over time in galaxy
 Age-metallicity relation
- Presolar grains however are enriched in ²⁹Si and ³⁰Si compared to Solar System

Presolar grain measurements require heterogeneous GCE

Other Isotopes show the Same Behavior compared to the Solar System

Trappitsch et al. (2018)

- The problem is twofold:
 - ${\scriptstyle \bullet }$ Slope of Si correlation >1
 - Enhancement in secondary ^{29,30}Si
- Stellar migration (Clayton, 1997) \rightarrow Range too small
- Presolar galactic merger (Clayton, 2003)
- Stochastic/heterogeneous GCE (Lugaro et al., 1999, Nittler, 2005)
 - \rightarrow Ti data does not agree
- Dust production bias (Lewis et al. 2013) \rightarrow Slope difficult to explain
- Overarching ²⁹Si problem! (Timmes and Clayton, 1996)

Clayton (1997)

- The problem is twofold:
 - $\bullet~$ Slope of Si correlation >1
 - Enhancement in secondary ^{29,30}Si
- Stellar migration (Clayton, 1997)
 → Range too small
- Presolar galactic merger (Clayton, 2003)
- Stochastic/heterogeneous GCE (Lugaro et al., 1999, Nittler, 2005)
 - \rightarrow Ti data does not agree
- Dust production bias (Lewis et al. 2013)
 → Slope difficult to explain
- Overarching ²⁹Si problem! (Timmes and Clayton, 1996)

Presolar Grains

- The problem is twofold:
 - $\bullet~$ Slope of Si correlation >1
 - Enhancement in secondary ^{29,30}Si
- Stellar migration (Clayton, 1997)
 → Range too small
- Presolar galactic merger (Clayton, 2003)
- Stochastic/heterogeneous GCE (Lugaro et al., 1999, Nittler, 2005)
 - \rightarrow Ti data does not agree
- Dust production bias (Lewis et al. 2013) \rightarrow Slope difficult to explain
- Overarching ²⁹Si problem! (Timmes and Clayton, 1996)

Lugaro et al. (1999)

Reto Trappitsch (EPFL)

- The problem is twofold:
 - ${\scriptstyle \bullet }$ Slope of Si correlation >1
 - Enhancement in secondary ^{29,30}Si
- Stellar migration (Clayton, 1997)
 → Range too small
- Presolar galactic merger (Clayton, 2003)
- Stochastic/heterogeneous GCE (Lugaro et al., 1999, Nittler, 2005)
 - \rightarrow Ti data does not agree
- Dust production bias (Lewis et al. 2013) \rightarrow Slope difficult to explain
- Overarching ²⁹Si problem! (Timmes and Clayton, 1996)

Lewis et al. (2014)

Reto Trappitsch (EPFL)

Presolar Grains

- The problem is twofold:
 - $\bullet~$ Slope of Si correlation >1
 - Enhancement in secondary ^{29,30}Si
- Stellar migration (Clayton, 1997)
 → Range too small
- Presolar galactic merger (Clayton, 2003)
- Stochastic/heterogeneous GCE (Lugaro et al., 1999, Nittler, 2005)
 - \rightarrow Ti data does not agree
- Dust production bias (Lewis et al. 2013) \rightarrow Slope difficult to explain
- Overarching ²⁹Si problem! (Timmes and Clayton, 1996)

Lugaro et al. (1999)

Reto Trappitsch (EPFL)

Influence of Nuclear Reaction Rates for Si Production/Destruction

- HungKwan Fok (Brandeis University)
- NuPyCEE GCE simulations show differences between yield sets

- Si mostly produced in massive stars
- Look at influence of nuclear reaction rate uncertainties on overall yield (production and destruction of Si)
- Plug back into GCE model
- Example of ${}^{26}Mg(\alpha, n) \times 3$ shows enhancement in ${}^{29}Si$ and ${}^{30}Si$

Influence of Nuclear Reaction Rates for Si Production/Destruction

- HungKwan Fok (Brandeis University)
- NuPyCEE GCE simulations show differences between yield sets

- Si mostly produced in massive stars
- Look at influence of nuclear reaction rate uncertainties on overall yield (production and destruction of Si)
- Plug back into GCE model
- Example of ${}^{26}Mg(\alpha, n) \times 3$ shows enhancement in ${}^{29}Si$ and ${}^{30}Si$

Influence of Nuclear Reaction Rates for Si Production/Destruction

- HungKwan Fok (Brandeis University)
- NuPyCEE GCE simulations show differences between yield sets

- Si mostly produced in massive stars
- Look at influence of nuclear reaction rate uncertainties on overall yield (production and destruction of Si)
- Plug back into GCE model
- Example of ${}^{26}Mg(\alpha, n) \times 3$ shows enhancement in ${}^{29}Si$ and ${}^{30}Si$

Where to Go From Here?

- Presolar grains allow us to directly probe stellar nucleosynthesis in the laboratory
- Allows us to study
 - Nucleosynthesis
 - Galactic Chemical Evolution
 - Interstellar Medium
- Isotopic information is unique

Another Messenger to Elucidate our Understanding of Nuclear Astrophysics!

Thank You! Questions?

EPFL

11...0 Iniversité de Lausanne

CHICAGO

Brandeis University: HungKwan Fok

EPFL / UniL: Stéphane Escrig, Cristina Martin Olmos, Anders Meibom, Florent Plane

Lawrence Livermore National Laboratory: Barbara Allen (Wang), Jutta Escher, Jason Harke, Richard Hughes, Brett Isselhardt, Wei Jia Ong, Mike Savina, Ziva Shulaker, Peter Weber

The University of Chicago / The Field Museum for Natural History: Andy Davis, Philipp Heck, Mike Pellin, Thomas Stephan

Konkoly Observatory Marco Pignatari

