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Introduction Lasers

An Idea as Old as the Laser

Laser: Light Amplification by Stimulated Emission of Radiation

Credit: Wikipedia, V1adis1av
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Introduction Lasers

Laser Principle

Credit: Wikipedia, Juboroff
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Introduction Resonance Ionization

The Process of Stimulated Emission is Reversible
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Ionization of titanium (Trappitsch+, 2018)
Absorption cross section σ is approximately equal to the
square of wavelength λ

σ ≈ λ2

Visible wavelength (400-800 nm): σ ≈ 10−9 cm2

Lifetime τ of a state is in the order of 10 ns
Required photon flux to saturate transition:

ϕ =
1
τ
× 1

σ
≈ 1017 cm−2 s−1
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Introduction Resonance Ionization

Pulsed Lasers can Achieve the Saturation Requirements

For a pulsed laser at 1 kHz repetition rate, ∼ 10 ns pulse
width, this photon flux corresponds to
→ A few mW average power
Requirement increased due to Doppler and power
broadening and laser spectral bandwidth
Pulsed lasers at 1 kHz, ∼ 10 ns pulse width can achieve up
to about 2 Wmm−2

For a DC instrument (e.g., SIMS):
Pulsed laser-on time: 10−8 s × 1000 Hz = 10−5

Average power requirement would hundreds of Watts for a
continuous-wave laser
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Introduction Schematic overview

We Need a Pulsed Mass Spectrometer: Time of Flight

Target Extractor Reflectron

Detector plus optics

Focusing optics

Ti:sapphire lasers
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Introduction Schematic overview

We Need a Pulsed Mass Spectrometer: Time of Flight

Target Extractor Reflectron
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The Nnitty-Gritty of RIMS Measurement Cycle

Measurement Cycles repeat at 1 kHz

1 Desorption / Sputtering of
sample

2 Ejection of secondary ions
3 Resonance ionization of

photoions
4 Extraction
5 Mass / Charge separation and

detection

Optional second ionization laser
pulse allows for separation of

isobars

228 6 Resonance Ionization Mass Spectrometry (RIMS)

ejection is much lower than the angle of incidence but can still cause a Doppler
shift if the net velocity vector has a projection along the laser beam direction. This
can affect ionization efficiency and isotope ratio measurements. In practice, the
Doppler shift can be negated by retro-reflecting the resonance lasers back along
themselves after passing through the ionization region.

In many cases, the pulsed nature of RIMS lasers makes ToF a natural choice
for the mass spectrometer. The photoion energy spread and the range of starting
positions across the laser volume can degrade mass resolution in ToF instru-
ments because the range of energies and flight distances translate to a range of
arrival times on the detector; however, RIMS spectroscopic discrimination and
the ability to quantify backgrounds reduces the need for high mass resolution.
A reflectron-type mass spectrometer (Figure 6.1) is typically used to compensate
for the energy and flight distance spread in the ions to first order. Because the
ionization region extends laterally up to a few millimeters along the laser beam,
RIMS time-of-flight-mass spectrometry (ToF-MS) systems often use cones
rather than grids to extract ions into the drift region (Figure 6.1). The cone acts
as an ion focusing optic and allows the extraction field to be shaped to accept
ions born along the laser direction with a relatively high velocity perpendicular
to the drift tube.

Because secondary ions are a source of backgrounds in sputtered neutral RIMS,
they must be suppressed or ejected before resonance ionization. In a reflectron
ToF instrument, this can be accomplished by pulsing the sample bias. A typical
pulse sequence is shown in Figure 6.9. With the sample bias set to zero, a primary
ion beam is pulsed onto the sample, and then the bias is raised to a potential above
that of the reflectron. Provided that the time is long enough to accelerate the sec-
ondary ions fully, they will not be turned by the reflectron and thus will not hit
the detector. The bias is then lowered briefly to zero and the resonance lasers are
pulsed to ionize the neutrals. This is often done to avoid Stark effects; however, in
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Figure 6.9 Sample pulsing scheme for secondary ion rejection in RIMS. The solid black line
represents the sample potential over time, the dotted line represents the primary ion pulse,
and the two peaks represent the resonance ionization laser pulses.

Savina and Trappitsch (2021)
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The Nnitty-Gritty of RIMS Sample Removal

Sample Removal: Sputtering vs. Laser Desorption

Ionoptica IOG-25Ga

Sputtering with Ga ion beam
< 100 nm spatial resolution
Motionless blanking required
Trade off beteween high current or high
spatial resolution
Duty cycle compared to SIMS: ∼ 10−4

Desorption laser
Various wavelength possible to couple
with different materials
Spot-size down to around 1 µm
Very low secondary ion backgrounds can
be achieved
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The Nnitty-Gritty of RIMS Sample Removal

Ionizing of Neutral Atoms: You only get One Chance!

Distance (mm)
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Savina and Trappitsch (2021)

Ionization laser beam size: ∼1.5 mm diameter cylinder
Laser intercepts cloud of neutrals above sample surface
Neutrals that do not get ionized in first shot will be lost due to cloud expansion
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The Nnitty-Gritty of RIMS Resonance Ionization

Multi-step Laser Ionization of, e.g., Titanium (Trappitsch et. al, 2018)

Resonance Ionization of Titanium requires
three lasers
Each ionization step is highly selective
Ionization schemes need to be tested:

Spectroscopy of states above ionization
potential
Saturation: Irradiance counts!

Ti has low lying states
Understand population of these states
Scheme specific
Here: majority after sputtering in ground
state
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The Nnitty-Gritty of RIMS Resonance Ionization

Multi-step Laser Ionization of, e.g., Titanium (Trappitsch et. al, 2018)
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The Nnitty-Gritty of RIMS Mass Analyzer

Separation of m/q in Time-of-Flight (TOF) Mass Analyzer

Time of Flight Mass Analyzer
∼ 3.5 m flight path
Grid-less reflectron to optimize transmission
Mass resolution m

∆m > 1000

Difficulty: Map a photoion volume in time onto detector
Lasers however take care of isobars
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The Nnitty-Gritty of RIMS Detection and TDC

Ion Counting — Record every Arrival Time

Ion counting detectors
Microchannel plate detectors (MCPs)
TOF Electron Multipliers

Time-to-Digital Conversion: 80 ps time resolution
Overall system dead-time: ∼ 700 ps
Reasonable count rates: ∼ 2, 000 cps
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What is it good for?

RIMS — A Versatile Technique for Trace Element Analyses

High sensitivity for small, atom-limited samples
Minimal sample preparation
Resonance ionization with tunable Ti:Sapphire
lasers
High spatial resolution

∼ 1 µm for laser desorption
< 100 nm for ion sputtering

High useful yield
38% for U analysis (Savina+ 2018)
∼ 18% for Ti analysis (Trappitsch+ 2018)

Low backgrounds and high isobar suppression
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What is it good for?

A RIMS Table of Elements

Savina and Trappitsch (2021)
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Applications Geochemistry

Potassic, High-Silica Hadean Crust (Boehnke+, 2018)

Composition of the Hadean crust
poorly understood
Rb/Sr ratio correlates with SiO2

Analyzed 10 apatite inclusions in
Archean zircons
Sr isotope ratios indicate high
Rb/Sr ratio
Suggest a felsic crust formed by
∼ 4.4 Ga
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Applications Cosmochemistry

Did a Supernova Contribute 60Fe to the Early Solar System?

Long-standing controversy:
In-situ SIMS measurements: “High” 60Fe
→ Implies supernova injection
Bulk ICPMS measurements: “Low” 60Fe
→ Can be explained as “galactic background”

Re-analysis by RIMS
Correlated effects minimized thanks to
normalization to 62,58Ni
RIMS measurements do not detect the
previously reported “high” 60Fe content

Beware your measurement uncertainties!
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Applications Cosmochemistry

60Fe in Early Solar System can be Explained as Galactic Background
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SIMS measurements regression (Mahon 1996)
Coefficient values ± 95% Confidence Interval

60Ni/58Niinitial = 0.38955 ± 0.00087
60Fe/56Feinitial = 3.7578e-08 ± 7.0704e-08
MSWD: 15.8

Intercept below chondritic, thus not disturbed, i.e., Ni not mobile.

SIMS Multi
slope: (4 ± 28) × 10-8

intercept: 0.3896 ± 0.0035
MSWD: 0.86

RIMS
slope: (3.8 ± 6.9) × 10-8

intercept: 0.38521 ± 0.00092
MSWD: 0.91

SIMS Mono
slope: (9 ± 17) × 10-8

intercept: 0.3847 ± 0.0017
MSWD: 0.99

Trappitsch+ (2018)
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Applications Astrophysics

Stardust grains: Tracing Stellar Nucleosynthesis
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Applications Astrophysics

Observations of Live 99Tc in AGB Stars
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Applications Astrophysics

Enhancements in 99Ru in Presolar Stardust (Savina+, 2004)

Ruthenium isotopic composition measured
in µm-sized SiC grains by RIMS
Comparison with slow neutron capture
process models

101Ru/100Ru agrees with models
99Ru/100Ru elevated due to in-situ decay
of 99Tc

Measurements require in-situ decay of 99Tc
Proof that these grains come from AGB
stars (stars of class S)
Many further measurements since

Stellar nucleosynthesis
Galactic chemical evolution
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Applications Further Applications

And there are Many More Uses for RIMS!

Surface Chemistry
Oxidation state of U
Enabled by low-lying state

Nuclear forensics
Verification
Attribution

Radionuclides in the environment
Tracing nuclear accidents
Study remediation measures

Medical applications
Ca metabolism
Drug uptake

. . .
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. . . 99Tc in pisum sativum (Mandel+, 2022)
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Combined power law/exponential versus pharmacokinetic
compartmental analysis

For direct comparison purposes, the relative deviations
between predicted and measured values for the power/
exponential analysis and the compartmental model are
presented in Fig. 5 as relative differences in percent for
the six subjects of subgroup A at each sampling time point
during the 700-day labeling period. Mean deviations of
measurements from predictions for the noncompartmental
approach were (−10±7)% for negative and (15±12)% for
positive divergence, totaling (−1±13)%. For the compart-
mental modeling approach, relative differences between
modeled data and 41Ca measurements were (−6±5)% for
negative and (−6±4)% for positive divergence at a
combined divergence of (0±7)%. This clearly demonstrates
the advantages of the compartmental analysis approach. For
this technique, relative differences between measured and
modeled data points were found to be smaller and more
balanced between negative and positive divergence, indi-
cating a better description of the data than obtained by the
modeled curve. Fits based on the use of a combined
exponential/power law to describe urinary tracer excretion
showed substantially higher deviations, which were fairly
unbalanced between negative and positive divergence.
Positive and negative divergences between measured and
predicted data points for compartmental analysis were
symmetric during the 700-day labeling period, and signif-
icantly smaller. Long-term variability of divergence (1 SD)
was 4% from day 150 after isotope administration, which is
higher than the short-term variability of the 41Ca signal
(∼3%), determined over five days. This translates into a
detection limit for a shift in the 41Ca signal of 12% when a

single urine sample is analyzed at the end of the
intervention period.

Use of 41Ca as a tool to assess the impact of interventions
on bone health

Start of a possible intervention

41Ca may provide a powerful tool for directly monitoring
changes in bone metabolism in response to an intervention
to a sensitivity that is expected to surpass the power of
conventional techniques. For these applications, however,
meaningful information can only be obtained when urinary
41Ca originates mainly from bone. To identify this stage
within the labeling process, changes in 41Ca distribution
between the compartments with time were calculated using
the population parameters in Eqs. 5–11 (see Fig. 6).
Following administration, the tracer is quickly transferred
from the central compartment (C1) to the fast exchanging
compartment (C2). A maximum amount of the tracer in C2

can be found 20–30 days post-dosing. After that, 41Ca is
successively transferred from the fast exchanging compart-
ment to the slowly exchanging bone compartment (C3) (see
Fig. 3). The maximum amount of the 41Ca in this
compartment is reached after 150–250 days. While changes
in bone formation and resorption can be identified, in
principle, by monitoring urinary 41Ca excretion over the
first few weeks post-dosing, a more reliable assessment of
the effect of intervention is possible after ∼150 days post-
dosing, when excreted tracer mainly originates from bone.

We propose that an intervention can be started after the
amount of 41Ca in compartment 3 (see Fig. 6) has reached a
maximum, i.e., at least 150 days after 41Ca administration,
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Fig. 4 Kinetics of urinary 41Ca
excretion in all subjects (open
circles). Datasets of two repre-
sentative subjects (ID 20,
squares, and 22, triangles) were
described by curves obtained
from the computed population
prediction (NONMEM) for the
sequential three-compartmental
model illustrated in Fig. 3. The
41Ca urinary excretion data for
all subjects are shown in the
inset
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RIMS Tricks Isobar separation

Simultaneous Measurements of Iron and Nickel
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RIMS Tricks Isobar separation

Multi-Element Analysis Avoiding Isobaric Overlap
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RIMS Tricks Isobar separation

Simultaneous Sr, Zr, and Mo analysis (Shulaker+, 2022)
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RIMS Tricks Quantitative background measurements

Signal and Noise: Quasi-Simultaneous Detection and Correction

Quantitative analysis of noise possible by RIMS
Signal: Lasers are on-resonance
Noise: Detune laser to be off resonance
Quasi-simultaneous

Tune additional laser and blink
on-/off-resonance
Use single laser and electro-optic deflectors (in
development)

Optimal “blinking” rate depends on signal/noise
Mandel+ (2022)
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Limitations

Full Disclosure — Limitations of RIMS

Count rate limitations significantly limit
the dynamic range

Narrowband cw lasers can be used in
special cases to increase dynamic range
Example: 41Ca/40Ca analysis

Duty cycle compared to SIMS: ∼ 10−4

Desorption laser coupling depends on
material and wavelength

Choose the right wavelength and pulse
width

Sample material might come off as
molecules

In-vacuo surface chemistry

Combined power law/exponential versus pharmacokinetic
compartmental analysis

For direct comparison purposes, the relative deviations
between predicted and measured values for the power/
exponential analysis and the compartmental model are
presented in Fig. 5 as relative differences in percent for
the six subjects of subgroup A at each sampling time point
during the 700-day labeling period. Mean deviations of
measurements from predictions for the noncompartmental
approach were (−10±7)% for negative and (15±12)% for
positive divergence, totaling (−1±13)%. For the compart-
mental modeling approach, relative differences between
modeled data and 41Ca measurements were (−6±5)% for
negative and (−6±4)% for positive divergence at a
combined divergence of (0±7)%. This clearly demonstrates
the advantages of the compartmental analysis approach. For
this technique, relative differences between measured and
modeled data points were found to be smaller and more
balanced between negative and positive divergence, indi-
cating a better description of the data than obtained by the
modeled curve. Fits based on the use of a combined
exponential/power law to describe urinary tracer excretion
showed substantially higher deviations, which were fairly
unbalanced between negative and positive divergence.
Positive and negative divergences between measured and
predicted data points for compartmental analysis were
symmetric during the 700-day labeling period, and signif-
icantly smaller. Long-term variability of divergence (1 SD)
was 4% from day 150 after isotope administration, which is
higher than the short-term variability of the 41Ca signal
(∼3%), determined over five days. This translates into a
detection limit for a shift in the 41Ca signal of 12% when a

single urine sample is analyzed at the end of the
intervention period.

Use of 41Ca as a tool to assess the impact of interventions
on bone health

Start of a possible intervention

41Ca may provide a powerful tool for directly monitoring
changes in bone metabolism in response to an intervention
to a sensitivity that is expected to surpass the power of
conventional techniques. For these applications, however,
meaningful information can only be obtained when urinary
41Ca originates mainly from bone. To identify this stage
within the labeling process, changes in 41Ca distribution
between the compartments with time were calculated using
the population parameters in Eqs. 5–11 (see Fig. 6).
Following administration, the tracer is quickly transferred
from the central compartment (C1) to the fast exchanging
compartment (C2). A maximum amount of the tracer in C2

can be found 20–30 days post-dosing. After that, 41Ca is
successively transferred from the fast exchanging compart-
ment to the slowly exchanging bone compartment (C3) (see
Fig. 3). The maximum amount of the 41Ca in this
compartment is reached after 150–250 days. While changes
in bone formation and resorption can be identified, in
principle, by monitoring urinary 41Ca excretion over the
first few weeks post-dosing, a more reliable assessment of
the effect of intervention is possible after ∼150 days post-
dosing, when excreted tracer mainly originates from bone.

We propose that an intervention can be started after the
amount of 41Ca in compartment 3 (see Fig. 6) has reached a
maximum, i.e., at least 150 days after 41Ca administration,
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Fig. 4 Kinetics of urinary 41Ca
excretion in all subjects (open
circles). Datasets of two repre-
sentative subjects (ID 20,
squares, and 22, triangles) were
described by curves obtained
from the computed population
prediction (NONMEM) for the
sequential three-compartmental
model illustrated in Fig. 3. The
41Ca urinary excretion data for
all subjects are shown in the
inset
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Summary

RIMS — A Tool for Your Analysis?

Small, atom-limited samples
Spot size:

< 100 nm ion gun
∼ 1 µm desorption laser

High useful yield: Up to ∼ 40% (U)
Isotope ratio uncertainties ≳ 2‰
Isobar suppresion and separation
Quantitavive background measurement

RIMS: An ultra-sensitive technique that is
complementary to, e.g., NanoSIMS

Presolar SiC grain
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Summary
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Small, atom-limited samples
Spot size:

< 100 nm ion gun
∼ 1 µm desorption laser
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RIMS: An ultra-sensitive technique that is
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