


Lasers
An |dea as Old as the Laser

Laser: Light Amplification by Stimulated Emission of Radiation
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Introduction Lasers

Laser Principle

THE LASER

In a laser, excited atoms are
put between two mirrors.

A first photon stimulates an
atom which emits a second
photon, and so on thanks
1o the mirrors.

Credit: Wikipedia, Juboroff
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https://en.wikipedia.org/wiki/File:Laser,_quantum_principle.ogv

Introduction Resonance lonization

The Process of Stimulated Emission is Reversible
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lonization of titanium (Trappitsch+, 2018)

Absorption cross section o is approximately equal to the
square of wavelength \

Visible wavelength (400-800 nm): ¢ =~ 10~° cm?

o~ N\

Lifetime 7 of a state is in the order of 10ns

Required photon flux to saturate transition:
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Introduction Resonance lonization

Pulsed Lasers can Achieve the Saturation Requirements

@ For a pulsed laser at 1 kHz repetition rate, ~ 10 ns pulse
width, this photon flux corresponds to
— A few mW average power

@ Requirement increased due to Doppler and power
broadening and laser spectral bandwidth

@ Pulsed lasers at 1 kHz, ~ 10ns pulse width can achieve up
to about 2W mm—2
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Introduction Resonance lonization

Pulsed Lasers can Achieve the Saturation Requirements

Reto Trappitsch (EPFL)

@ For a pulsed laser at 1 kHz repetition rate, ~ 10 ns pulse
width, this photon flux corresponds to
— A few mW average power

@ Requirement increased due to Doppler and power
broadening and laser spectral bandwidth

@ Pulsed lasers at 1 kHz, ~ 10ns pulse width can achieve up
to about 2W mm—2

e For a DC instrument (e.g., SIMS):

o Pulsed laser-on time: 10785 x 1000 Hz = 107>
o Average power requirement would hundreds of Watts for a
continuous-wave laser
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IRVt Schematic overview

We Need a Pulsed Mass Spectrometer: Time of Flight

Target Extractor Focusing optics Reflectron
‘ )

Detector plus optics

Ti:sapphire lasers
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IRVt Schematic overview

We Need a Pulsed Mass Spectrometer: Time of Flight

lon pulse / Desorption pulse
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IRVt Schematic overview

We Need a Pulsed Mass Spectrometer: Time of Flight
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Sl oy
We Need a Pulsed Mass Spectrometer: Time of Flight

Target Extractor Focusing optics Reflectron
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Detector plus optics

Ti:sapphire lasers
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The Nnitty-Gritty of RIMS Measurement Cycle

Measurement Cycles repeat at 1 kHz

6
) i Secondary ion
@ Desorption / Sputtering of reject
5
sample
@ Ejection of secondary ions <4
(o]
© Resonance ionization of % Primalry ion I;;alsseer Photoion extraction
. pulse = Optional second
(0]
photoions g e laser pulse
@ Extraction 82 ‘l
. [
@ Mass / Charge separation and 1 |
detection |I
0
. T 05 -04 -03 -02 -01 0 01 02 03 04
Optional second ionization laser Time (u5)

pulse allows for separation of
isobars

Savina and Trappitsch (2021)
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LR LhAE N YRSENIV I Sample Removal

Sample Removal: Sputtering vs. Laser Desorption

lonoptica 10G-25Ga

Reto Trappitsch (EPFL)

@ Sputtering with Ga ion beam

e < 100 nm spatial resolution

o Motionless blanking required

o Trade off beteween high current or high
spatial resolution

o Duty cycle compared to SIMS: ~ 10~*

@ Desorption laser

o Various wavelength possible to couple
with different materials

e Spot-size down to around 1pm

o Very low secondary ion backgrounds can
be achieved

RIMS Jan 17, 2023 8/30



LR LhAE N YRSENIV I Sample Removal

Sample Removal: Sputtering vs. Laser Desorption

@ Sputtering with Ga ion beam

o < 100 nm spatial resolution

o Motionless blanking required

o Trade off beteween high current or high
spatial resolution

o Duty cycle compared to SIMS: ~ 10~4

@ Desorption laser

o Various wavelength possible to couple
with different materials

e Spot-size down to around 1pm

o Very low secondary ion backgrounds can
be achieved

EKSPLA 1064 nm Desorption Laser &
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The Nnitty-Gritty of RIMS Sample Removal

lonizing of Neutral Atoms: You only get One Chance!

15
46T 9BMo 238
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@ lonization laser beam size: ~1.5mm diameter cylinder
@ Laser intercepts cloud of neutrals above sample surface

@ Neutrals that do not get ionized in first shot will be lost due to cloud expansion
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The Nnitty-Gritty of RIMS Resonance lonization

Multi-step Laser lonization of, e.g., Titanium (Trappitsch et. al, 2018)

@ Resonance lonization of Titanium requires
three lasers

@ Each ionization step is highly selective
@ lonization schemes need to be tested:

o Spectroscopy of states above ionization
potential
e Saturation: Irradiance counts!

@ Ti has low lying states

o Understand population of these states

o Scheme specific

o Here: majority after sputtering in ground
state

Reto Trappitsch (EPFL) RIMS
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Resenance lonization
Multi-step Laser lonization of, e.g., Titanium (Trappitsch et. al, 2018)

@ Resonance lonization of Titanium requires
three lasers

@ Each ionization step is highly selective | 6

@ lonization schemes need to be tested:

fz
o Spectroscopy of states above ionization / } \
potential \ ."V __,./

e Saturation: Irradiance counts! 480 881 852 883

Signal (arb)

§87 885 889 890 891 901 902 903 904
o TI has IOW |y|ng states Wavelength of ionization laser (nm)
o Understand population of these states
o Scheme specific
o Here: majority after sputtering in ground
state
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Resenance lonization
Multi-step Laser lonization of, e.g., Titanium (Trappitsch et. al, 2018)

o
0
T

@ Resonance lonization of Titanium requires
three lasers

o
=
T

Signal (arb)

1* transition (°F,) | 04 1* transition (°Fs) |

04r
. . . . . . 465.777 nm 469.498 nm
@ Each ionization step is highly selective s Fit parameters: | . Fit parameters: |
. . . L= 1.7 % 10' W em? . L =2.1x10° W cm?
@ lonization schemes need to be tested: o ‘ A ‘ Now = 113 |
0 10° 2x10° 0 2x10° 4x10°

o Spectroscopy of states above ionization
potential 1
e Saturation: Irradiance counts!

0.8 0.8
. . =
@ Ti has low lying states £ 06 06
M <
o Understand population of these states 5 oal 2 wansition | g 41. lonization transition
° Scheme specific LI 416.158 nm : 881.399 nm
.. . . 02 Fit parameters: | o Fit parameters: |
e Here: majority after sputtering in ground 1‘..‘:3.610*\»'812: L..FZ.W;JO‘W'S?:
max 75 max = U.03
0 s 50 s ; E
state 0 10° 2¢10° 0 3x10°  6x10°
Irradiance (W em™) Irradiance (W em™)

Reto Trappitsch (EPFL) RIMS Jan 17, 2023 10 /30



The Nnitty-Gritty of RIMS Resonance lonization

Multi-step Laser lonization of, e.g., Titanium (Trappitsch et. al, 2018)

IP, 55072cm ' "A ¢ segaacm-t 17
2
@ Resonance lonization of Titanium requires 5x10t o P
o]
[ee]
three lasers ¥ asa99am G,
@ Each ionization step is highly selective _ax10t 5
- . T E
@ lonization schemes need to be tested: g @ _
= = >
H H H - — 4w
° SpectrF)scopy of states above ionization 8 32100 < <
potential £ ¥ e
e Saturation: Irradiance counts! g 35
. . © 4 -1 3
e Ti has low lying states z 20 4 _ craesem 16
o Understand population of these states E g o ?
e Scheme specific ol [R1E ]S
o Here: majority after sputtering in ground N - !
< 387cmt, °F,
state 170em-!, °F,
0 0cm~ °F, |
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Mass Analyzer
Separation of m/q in Time-of-Flight (TOF) Mass Analyzer

@ Time of Flight Mass Analyzer

o ~ 3.5m flight path
o Grid-less reflectron to optimize transmission
o Mass resolution z7- > 1000

@ Difficulty: Map a photoion volume in time onto detector

@ Lasers however take care of isobars
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LLER\ LA YRS ENIV Il Detection and TDC

lon Counting — Record every Arrival Time

@ lon counting detectors

o Microchannel plate detectors (MCPs)
o TOF Electron Multipliers

e Time-to-Digital Conversion: 80 ps time resolution
@ Overall system dead-time: ~ 700 ps
@ Reasonable count rates: ~ 2,000 cps

Reto Trappitsch (EPFL) RIMS

Jan 17, 2023
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RIMS — A Versatile Technique for Trace Element Analyses

@ High sensitivity for small, atom-limited samples
@ Minimal sample preparation
@ Resonance ionization with tunable Ti:Sapphire
lasers
@ High spatial resolution
e ~ 1lyum for laser desorption
e < 100 nm for ion sputtering
e High useful yield
o 38% for U analysis (Savina+ 2018)
o ~ 18% for Ti analysis (Trappitsch+ 2018)

@ Low backgrounds and high isobar suppression

det mag HV  spot WD | dwell HFW 1pm
ETD 75 382 x 30.00 kV 5.0 10.9 mm 15 us 3.40 pm Presolar Grain
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What is it good for?

A RIMS Table of Elements

A RIMS Periodic Table

. M accessible by RIMS
Li[Be | mpublished RIMS studies B
Na | Mg i published RIMS isotopic measurements Allsi|l P
K |Ca|Sc|Ti| V| CrlMn|Fe|Co| Ni|Cu|Zn|Ga|Ge|As Kr
Rb|Sr|Y |Zr | Nb|Mo| Tc |Ru|Rh|Pd|Ag|Cd]|In [Sn|Sb |Te Xe
Cs|Ba| * |Hf | Ta| W|Re|[Os| Ir | Pt |Au|Hg| Tl | Pb| Bi | Po|At |Rn
Fr| Ra| **

*|LalCe|Pr |Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho| Er |Tm|Yb| Lu

»*|Ac|Th|Pa| U |Np|Pu|Am|Cm|Bk | Cf|Es |[Fm|Md|No | Lr

RIMS

Savina and Trappitsch (2021)

14 /30



Laser lonization of Neutrals /'







Geochemistry
Potassic, High-Silica Hadean Crust (Boehnke+, 2018)

@ Composition of the Hadean crust
poorly understood

@ Rb/Sr ratio correlates with SiO5

@ Analyzed 10 apatite inclusions in
Archean zircons

@ Sr isotope ratios indicate high
Rb/Sr ratio

@ Suggest a felsic crust formed by
~ 4.4 Ga

Reto Trappitsch (EPFL)
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Applications

Geochemistry

Potassic, High-Silica Hadean Crust (Boehnke+, 2018)

@ Composition of the Hadean crust
poorly understood

@ Rb/Sr ratio correlates with SiO5

@ Analyzed 10 apatite inclusions in
Archean zircons

@ Sr isotope ratios indicate high
Rb/Sr ratio

@ Suggest a felsic crust formed by
~ 4.4 Ga

Reto Trappitsch (EPFL)
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LV-IELI S Cosmochemistry

Did a Supernova Contribute ®°Fe to the Early Solar System?

Long-standing controversy:

o In-situ SIMS measurements: “High” %°Fe

— Implies supernova injection
o Bulk ICPMS measurements: “Low” ®OFe
— Can be explained as “galactic background”

Re-analysis by RIMS

Correlated effects minimized thanks to
normalization to 62:58Ni

RIMS measurements do not detect the
previously reported “high” °Fe content

Beware your measurement uncertainties!

Reto Trappitsch (EPFL) RIMS
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LV-IELI S Cosmochemistry

Did a Supernova Contribute ®°Fe to the Early Solar System?

o Long-standing controversy: e RIMS \ ' '
o In-situ SIMS measurements: “High” %°Fe 40 : z:mz mgl:o | 140
— Implies supernova injection 3 ook | 120
T " 60 X X
o Bulk ICPMS measurements: “Low” *°Fe ) =
— Can be explained as “galactic background” § 0—% 40 g
@ Re-analysis by RIMS %é _2oL | ——205
o Correlated effects minimized thanks to < <4
normalization to %%58Nj —4or l \ 7740
(@) (b) \
@ RIMS measurements do not detect the —-60L . - L1 4-60

L 1 L
-20 0 20 -20 0 20

reviously reported “high” °Fe content
P y rep & 5Nisg (%0) % Nigy (%o)

Beware your measurement uncertainties!

Trappitsch+ (2018)
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Applications

Cosmochemistry

®0Fe in Early Solar System can be Explained as Galactic Background

0.40
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%
o
B
£ 038
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0.36

Reto Trappitsch (EPFL)
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0.40
e RIMS SIMS Mono
A SIMS Multi slope:  (9+17)x 10°
v SIMS Mono intercept: 0.3847 +0.0017| 0.38
- Gramlich et al. (1989) [MSWD:  0.99
RIMS SIMS Multi
slope:  (38+6.9)x10° [|slope: (4 +28)x10° 0.36 | | | |
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Trappitsch+ (2018)
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A-PIENI S Astrophysics

Stardust grains: Tracing Stellar Nucleosynthesis

Supernova  AGB star Solar nebula

A TN -
b 4 ' %
LN

Aster0|d

Reto Trappitsch (EPFL)

Presolar
grains
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Applications

Observations of Live 2°Tc in AGB Stars

Rh 97

30.7m

protons

Ru 96

20.0 h

52

Rh 98

8.72m

Ru 97

2.8370d

Tc 95

Ru 101

Ru 102

31.55
Tc96 || €97 || Tc98 || Tc 99 ||Tc 100 || Tc 101
4.28d 4.21 My 4.2 My 211.1ky 1546 s 1422 m
Mo 95 | Mo 96 Mo 98 |RYUCEEM Mo 100
15.84 16.67 24.39 65.976 h 9.82
‘ Nb 94 || Nb 95 || Nb 96 || Nb 97 || Nb 98 || Nb 99
l 20.4 ky 34.991d 23.35h 721m 2.86s 15.0s
54 56 58
neutrons
main s-process path
minor reactions stable B B
decay || decay
==» branched s-process

RIMS

Astrophysics

SPECTROSCOPIC OBSERVATIONS OF STARS OF CLASS S

CARNEGIE

TABLE 2
INTENSITIES OF LINES AND BANDS

Pauvr W. MERRILL
MouNT WILSON AND PALOMAR Onszx\uomzs
INSTITUTION OF N
CALIFORNIA INSTITUTE OF
Received February 2i

b@om“

ABSORPTION Emssion’
StAR Prate |
20 | Tio | Ban | X% | rox | m | Few | Mex | Six | Inx | Cox
Temp.
RAnd....| Ce3522| 8 3 s 8 410 ] 3 2 3 3|2
U Cas Pc 127 7 7 5 6 31| 3 1 3 1|2
HD 22649.| Pc 192 | 2 2 5 6 1 0 0 0 0 0|0
R Gem....|Pc 68| 3 0| 10 7 5110 3 2 2 303
SUMa....| Pc 110 | 1 0 7 4 1|10 3 1 2 1)1
TSgr....|Pc 124| 7 0 7 5 3| 10 3 2 3 403
R Cyg Pc 137 | 10 0 10| 3 3| 10 2 2 2| 2|3
AACyg...|Pc 115| 8 7 7] 8 4 0 0 0 0| 010
ZDel. Pc 112 2 7 313 1] 10 3 1 20 0|2
x Cyg.....| Ce3762 | 5 | 20 3010 3| w0 3 2 5| 42
o Cet |[Cedat09 | 1 | 15 1 7 2 H 1 0 20 110
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Leo. Pc 40| 0 | 20 110 0| 10 4 4 6 ) 310
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Astrophysics
Enhancements in ®Ru in Presolar Stardust (Savina+, 2004)

@ Ruthenium isotopic composition measured
in pm-sized SiC grains by RIMS

e Comparison with slow neutron capture
process models

o 101Ru/19Ry agrees with models

o %Ru/!%Ru elevated due to in-situ decay
of 9Tc

o Measurements require in-situ decay of %°Tc
@ Proof that these grains come from AGB
stars (stars of class S)

@ Many further measurements since

e Stellar nucleosynthesis
e Galactic chemical evolution

Reto Trappitsch (EPFL) RIMS Jan 17, 2023 22 /30



Astrophysics
Enhancements in ®Ru in Presolar Stardust (Savina+, 2004)

B —T T T T
° Ruthenium iSOtOpiC Composition measured (1] T S P PSP ﬁ‘—
in pm-sized SiC grains by RIMS - ©
e Comparison with slow neutron capture ~ -200 c)oc’ .
process models & | &3*‘1 il
o 10IRy/190Ry agrees with models T 400k o P

o 99Ru/%%Ry elevated due to in-situ decay 8 o0 © :
of 9Tc = I .
o % L 600 .

@ Measurements require in-situ decay of *Tc SUO :
@ Proof that these grains come from AGB 8001 P
stars (stars of class S) I P

@ Many further measurements since | , , , i

_1000 1 1 1 1 1
e Stellar nucleosynthesis -1000 -800 -600 -400  -200 0
o Galactic chemical evolution §'"Ru/"°Ru (%)
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A-PIENI S Astrophysics

Enhancements in ®Ru in Presolar Stardust (Savina+, 2004)

@ Ruthenium isotopic composition measured
in pm-sized SiC grains by RIMS
e Comparison with slow neutron capture
process models
o 101Ru/19Ry agrees with models
o 99Ru/%%Ry elevated due to in-situ decay
of 9Tc

o Measurements require in-situ decay of %°Tc
@ Proof that these grains come from AGB
stars (stars of class S)

@ Many further measurements since

e Stellar nucleosynthesis
e Galactic chemical evolution

Reto Trappitsch (EPFL) RIMS
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Further Applications
And there are Many More Uses for RIMS!

5x10%

@ Surface Chemistry

e Oxidation state of U
o Enabled by low-lying state ax10e
@ Nuclear forensics
o Verification
e Attribution
o Radionuclides in the environment

e Tracing nuclear accidents
e Study remediation measures

3x10*

Wavenumber (cm™1)

2x10*

@ Medical applications

o Ca metabolism 100
e Drug uptake

Reto Trappitsch (EPFL) RIMS

1P, 49958 cm~*

49968cm™1, Al | ¢

836.890 nm

n
-

38019cm~?, =7

789.204nm
IS

394.508 nm

y 25348cm~!, =6

o
Energy (eV)

404.400nm

620cm™?, °Ks
0cm™?, 5L

Jan 17, 2023

23/30



V-l  Further Applications

And there are Many More Uses for RIMS!

@ Surface Chemistry

e Oxidation state of U
o Enabled by low-lying state

@ Nuclear forensics

o Verification
e Attribution

o Radionuclides in the environment

e Tracing nuclear accidents
e Study remediation measures

@ Medical applications

o Ca metabolism
e Drug uptake

Reto Trappitsch (EPFL)

0.7
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DOq
0(9. %O
° e©
e © :
o °
°
O Uo, <
o U0,
o U Metal
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[U]
Savina+ (2018)
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Further Applications
And there are Many More Uses for RIMS!

A Savina, Isselhardt, Trappitsch (2021)

@ Surface Chemistry

e Oxidation state of U

o Enabled by low-lying state
@ Nuclear forensics

o Verification ‘
o Attribution 100 png

o Radionuclides in the environment

e Tracing nuclear accidents
e Study remediation measures

@ Medical applications

o Ca metabolism
e Drug uptake
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Further Applications
And there are Many More Uses for RIMS!

e Surface Chemistry 77.1

e Oxidation state of U
o Enabled by low-lying state

@ Nuclear forensics
o Verification
e Attribution
o Radionuclides in the environment

e Tracing nuclear accidents
e Study remediation measures

um

38.55

@ Medical applications

o Ca metabolism
o Drug uptake 0 38.55

um

~1
~

° ... 99T¢ in pisum sativum (Mandel+, 2022)
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Further Applications
And there are Many More Uses for RIMS!

o Surface Chemistry 1,007

e Oxidation state of U
o Enabled by low-lying state
@ Nuclear forensics
o Verification
e Attribution
o Radionuclides in the environment

e Tracing nuclear accidents
e Study remediation measures 1.0E-10

1.0E-08 4

1.0E-09 4

“Icai*ca isotope ratio in urine

° Medical 3 |ications 0 100 200 300 400 500 600 700 800
pp Days after #Ca administration

o Ca metabolism
e Drug uptake Denk+ (2006)
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RIMS Tricks Isobar separation

Simultaneous Measurements of Iron and Nickel

100 4

Trappitsch et al. (2018)

Signal (arb)

54 56 58 60 62 64 66
Mass (amu)
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RIMS Tricks Isobar separation

Simultaneous Measurements of Iron and Nickel

Mass, calibrated for Ni (amu)
53 54 55 56 57 58 59 60 61 62 63 64 65

100 .
Trappitsch et al. (2018)

Signal (arb)

53 54 55 56 57 58 59 60 61 62 63 64 65 66
Mass, calibrated for Fe (amu)
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[t
Multi-Element Analysis Avoiding Isobaric Overlap

Mass, calibrated for Pu (amu)
232 233 234 235 236 237 238 239 240 241 242 243

104 4 Data: Savina, Isselhardt, & Trappitsch (2021) . v
Spent nuclear fuel sample [

— EE Am
£ 103 4
[
3
o
— 2
= 107 3
C
(e}
=

101 p

100 p

233 234 235 236 237 238 239 240 241 242 243 244 245

Mass, calibrated for U & Am measurements (amu)
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Isobar separation
Simultaneous Sr, Zr, and Mo analysis (Shulaker+, 2022)

Mass, Zr calibration (amu)
90 91 92 94 96

103 .

102 .

Counts (arb)

101 4

10° 4
84

Reto Trappitsch (EPFL)

86

87

88 92 94 95 96 97 98 100
Mass, Sr, Mo calibration (amu)

RIMS Jan 17, 2023
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RIMS Tricks Quantitative background measurements

Signal and Noise: Quasi-Simultaneous Detection and Correction

BN resonant N detuned: FES +2cm™

Quantitative analysis of noise possible by RIMS 20004

Signal: Lasers are on-resonance

1500

(counts)

Noise: Detune laser to be off resonance

1000

Quasi-simultaneous

Intensity

e Tune additional laser and blink

on-/off-resonance o
o Use single laser and electro-optic deflectors (in
development) 95 96 o7 98 99 100 101 102 103

m/z

Optimal “blinking” rate depends on signal/noise
Mandel+4 (2022)
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RIMS Tricks Quantitative background measurements

Signal and Noise: Quasi-Simultaneous Detection and Correction

=

Quantitative analysis of noise possible by RIMS

Signal: Lasers are on-resonance

Noise: Detune laser to be off resonance
Quasi-simultaneous
e Tune additional laser and blink
on-/off-resonance

o Use single laser and electro-optic deflectors (in
development)

Fraction of time to measure on resonance (fs)

Optimal “blinking” rate depends on signal/noise

B

O%01 01 1 Ho oo foo0 10+ i0°
Anticipated signal-to-noise level (1)
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Full Disclosure — Limitations of RIMS

e Count rate limitations significantly limit 1.08:07

the dynamic range
o Narrowband cw lasers can be used in
special cases to increase dynamic range
o Example: #1Ca/*°Ca analysis

1.0E-08 4

e Duty cycle compared to SIMS: ~ 10~4
@ Desorption laser coupling depends on
material and wavelength

o Choose the right wavelength and pulse 010
Wldth 0 100 200 300 400 500 600 700 800

Days after *'Ca administration

1.0E-09

“Ica®ca isotope ratio in urine

@ Sample material might come off as
molecules
e In-vacuo surface chemistry
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Full Disclosure — Limitations of RIMS

e Count rate limitations significantly limit
the dynamic range
o Narrowband cw lasers can be used in
special cases to increase dynamic range
o Example: #1Ca/*°Ca analysis

e Duty cycle compared to SIMS: ~ 10~*

@ Desorption laser coupling depends on
material and wavelength
o Choose the right wavelength and pulse
width
@ Sample material might come off as
molecules

e In-vacuo surface chemistry
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Full Disclosure — Limitations of RIMS

e Count rate limitations significantly limit
the dynamic range
o Narrowband cw lasers can be used in
special cases to increase dynamic range
o Example: #1Ca/*°Ca analysis

e Duty cycle compared to SIMS: ~ 10~*

@ Desorption laser coupling depends on
material and wavelength
o Choose the right wavelength and pulse
width

@ Sample material might come off as
molecules

e In-vacuo surface chemistry
Hiden Analytical 1G20
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RIMS — A Tool for Your Analysis?

@ Small, atom-limited samples
@ Spot size:

e < 100nm ion gun
e ~ 1pm desorption laser

e High useful yield: Up to ~ 40% (V)
@ Isotope ratio uncertainties = 2%o
@ lIsobar suppresion and separation

@ Quantitavive background measurement

RIMS: An ultra-sensitive technique that is
complementary to, e.g., NanoSIMS

Presolar SiC grain
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RIMS — A Tool for Your Analysis?

@ Small, atom-limited samples
@ Spot size:

e < 100nm ion gun
o ~ 1pm desorption laser

e High useful yield: Up to ~ 40% (V)
@ Isotope ratio uncertainties 2> 2%o
@ lIsobar suppresion and separation

@ Quantitavive background measurement

RIMS: An ultra-sensitive technique that is

Laser cavity on CHILI
complementary to, e.g., NanoSIMS
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RIMS — A Tool for Your Analysis?

] ARIMS Periodic Table (]
e Small, atom-limited samples TToa]  maccessible by Rims .
n i RIMS studies
] Spot size: Na [ Mg M published RIMS isotopic measurements Allsi|lp
e < 100 nm ion gun K [ca|sc|Ti| v|cr[mn|Fe|co|ni|culzn|ca|aeAs Kr
o ~1 pm desorption laser Rb|Sr|Y [Zr | Nb|Mo| Tc |Ru|Rh|Pd|Ag|Cd| In [Sn|Sb |Te Xe
. . P ,
° ngh useful y|e|d: Up to ~ 40% (U) Cs|Ba Hf | Ta| W | Re|Os| Ir [ Pt |Au|Hg| Tl | Pb| Bi | Po|At |Rn
Fr| Ra| **
@ Isotope ratio uncertainties = 2%o
I b . d . *|La|Ce|Pr|Nd|Pm|Sm|Eu|Gd|Tb|Dy|Ho| Er [Tm|Yb| Lu
@ lIsobar suppresion and separation «[Ac|Th|Pa| U |Np|Pu[Am[cm|BKk | cf|Es [Fm[md|No | Lr
@ Quantitavive background measurement

RIMS: An ultra-sensitive technique that is

Savi dT itsch (2021
complementary to, e.g., NanoSIMS avina and Trappitsch ( )
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Summary

RIMS — A Tool for Your Analysis?

@ Small, atom-limited samples
@ Spot size:

e < 100nm ion gun
o ~ 1pm desorption laser

e High useful yield: Up to ~ 40% (V)
@ Isotope ratio uncertainties = 2%o
@ lIsobar suppresion and separation

@ Quantitavive background measurement

RIMS: An ultra-sensitive technique that is
complementary to, e.g., NanoSIMS

Reto Trappitsch (EPFL) RIMS

LION at LLNL

Jan 17, 2023
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LG ESL A Thank You!

Collaborators

B Lawrence Livermore
National Laboratory

Mike Savina
Brett Isselhardt
Ziva Shulaker
David Willingham
Mike Kristo

More Information. ..
@ reto.trappitsch@epfl.ch

@ https://galactic-forensics.space
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