Resonance Ionization Mass Spectrometry

Reto Trappitsch Laboratory for Biological Geochemistry

-= _- = 🕅

An Idea as Old as the Laser

Laser: Light Amplification by Stimulated Emission of Radiation

Credit: Wikipedia, V1adis1av

Laser Principle

Credit: Wikipedia, Juboroff

The Process of Stimulated Emission is Reversible

- Ionization of titanium (Trappitsch+, 2018)
- Absorption cross section σ is approximately equal to the square of wavelength λ

$$\sigma \approx \lambda^2$$

- Visible wavelength (400-800 nm): $\sigma \approx 10^{-9}\,{\rm cm^2}$
- Lifetime τ of a state is in the order of 10 ns
- Required photon flux to saturate transition:

$$\phi = \frac{1}{\tau} \times \frac{1}{\sigma} \approx 10^{17} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$$

Pulsed Lasers can Achieve the Saturation Requirements

- For a pulsed laser at 1 kHz repetition rate, \sim 10 ns pulse width, this photon flux corresponds to \rightarrow A few mW average power
- Requirement increased due to Doppler and power broadening and laser spectral bandwidth
- $\bullet\,$ Pulsed lasers at 1 kHz, $\sim 10\,{\rm ns}$ pulse width can achieve up to about 2 W mm $^{-2}$

Pulsed Lasers can Achieve the Saturation Requirements

- For a pulsed laser at 1 kHz repetition rate, \sim 10 ns pulse width, this photon flux corresponds to \rightarrow A few mW average power
- Requirement increased due to Doppler and power broadening and laser spectral bandwidth
- $\bullet\,$ Pulsed lasers at 1 kHz, $\sim 10\,{\rm ns}$ pulse width can achieve up to about 2 W mm $^{-2}$
- For a DC instrument (e.g., SIMS):
 - $\bullet\,$ Pulsed laser-on time: $10^{-8}\,\mathrm{s}\times1000\,\mathrm{Hz}=10^{-5}$
 - Average power requirement would **hundreds of Watts** for a continuous-wave laser

Reto Trappitsch (EPFL)

Reto Trappitsch (EPFL)

Reflectron

Target Extractor Focusing optics Reflectron Detector plus optics **Ti:sapphire lasers**

Reto Trappitsch (EPFL)

Measurement Cycles repeat at 1 kHz

- Desorption / Sputtering of sample
- e Ejection of secondary ions
- Resonance ionization of photoions
- Extraction
- Mass / Charge separation and detection

Optional second ionization laser pulse allows for separation of isobars

Savina and Trappitsch (2021)

Sample Removal: Sputtering vs. Laser Desorption

- Sputtering with Ga ion beam
 - \bullet < 100 nm spatial resolution
 - Motionless blanking required
 - Trade off beteween high current or high spatial resolution
 - $\bullet\,$ Duty cycle compared to SIMS: $\sim 10^{-4}\,$
- Desorption laser
 - Various wavelength possible to couple with different materials
 - $\bullet\,$ Spot-size down to around $1\,\mu m$
 - Very low secondary ion backgrounds can be achieved

Ionoptica IOG-25Ga

Sample Removal: Sputtering vs. Laser Desorption

EKSPLA 1064 nm Desorption Laser

- Sputtering with Ga ion beam
 - $\bullet~<$ 100 nm spatial resolution
 - Motionless blanking required
 - Trade off beteween high current or high spatial resolution
 - $\bullet\,$ Duty cycle compared to SIMS: $\sim 10^{-4}\,$
- Desorption laser
 - Various wavelength possible to couple with different materials
 - $\bullet\,$ Spot-size down to around $1\,\mu m$
 - Very low secondary ion backgrounds can be achieved

Ionizing of Neutral Atoms: You only get One Chance!

Savina and Trappitsch (2021)

- Ionization laser beam size: ${\sim}1.5\,\text{mm}$ diameter cylinder
- Laser intercepts cloud of neutrals above sample surface
- Neutrals that do not get ionized in first shot will be lost due to cloud expansion

- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

Separation of m/q in Time-of-Flight (TOF) Mass Analyzer

- Time of Flight Mass Analyzer
 - $\bullet~\sim 3.5\,m$ flight path
 - Grid-less reflectron to optimize transmission
 - Mass resolution $\frac{m}{\Delta m} > 1000$
- Difficulty: Map a photoion volume in time onto detector
- Lasers however take care of isobars

Ion Counting — Record every Arrival Time

- Ion counting detectors
 - Microchannel plate detectors (MCPs)
 - TOF Electron Multipliers
- Time-to-Digital Conversion: 80 ps time resolution
- Overall system dead-time: \sim 700 ps
- Reasonable count rates: $\sim 2,000\,\text{cps}$

RIMS — A Versatile Technique for Trace Element Analyses

- High sensitivity for small, atom-limited samples
- Minimal sample preparation
- Resonance ionization with tunable Ti:Sapphire lasers
- High spatial resolution
 - $\bullet~\sim 1\,\mu m$ for laser desorption
 - $\bullet~<100\,nm$ for ion sputtering
- High useful yield
 - 38% for U analysis (Savina+ 2018)
 - $\sim 18\%$ for Ti analysis (Trappitsch+ 2018)
- Low backgrounds and high isobar suppression

A RIMS Table of Elements

Н	A RIMS Periodic Table														Не		
Li	Ве	e accessible by RIMS												Ν	0	F	Ne
Na	Mg	Mg published RIMS isotopic measurements										AI	Si	Ρ	S	CI	Ar
ĸ	Са	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	ГС	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
Cs	Ba	*	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	**															

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Savina and Trappitsch (2021)

Geochemistry

Potassic, High-Silica Hadean Crust (Boehnke+, 2018)

- Composition of the Hadean crust poorly understood
- $\bullet~Rb/Sr$ ratio correlates with SiO_2
- Analyzed 10 apatite inclusions in Archean zircons
- Sr isotope ratios indicate high Rb/Sr ratio
- Suggest a felsic crust formed by \sim 4.4 Ga

Potassic, High-Silica Hadean Crust (Boehnke+, 2018)

- Composition of the Hadean crust poorly understood
- $\bullet~Rb/Sr$ ratio correlates with SiO_2
- Analyzed 10 apatite inclusions in Archean zircons
- Sr isotope ratios indicate high Rb/Sr ratio
- Suggest a felsic crust formed by \sim 4.4 Ga

Did a Supernova Contribute ⁶⁰Fe to the Early Solar System?

• Long-standing controversy:

- In-situ SIMS measurements: "High" $^{60}{\rm Fe}$ \rightarrow Implies supernova injection
- Bulk ICPMS measurements: "Low" ⁶⁰Fe
 → Can be explained as "galactic background"
- Re-analysis by RIMS
- Correlated effects minimized thanks to normalization to ^{62,58}Ni
- RIMS measurements do not detect the previously reported "high" ⁶⁰Fe content

Beware your measurement uncertainties!

Cosmochemistry

Did a Supernova Contribute ⁶⁰Fe to the Early Solar System?

- Long-standing controversy:
 - In-situ SIMS measurements: "High" 60 Fe \rightarrow Implies supernova injection
 - Bulk ICPMS measurements: "Low" $^{60}{\rm Fe}$ \rightarrow Can be explained as "galactic background"
- Re-analysis by RIMS
- Correlated effects minimized thanks to normalization to ^{62,58}Ni
- RIMS measurements do not detect the previously reported "high" ⁶⁰Fe content

Beware your measurement uncertainties!

Trappitsch+ (2018)

⁶⁰Fe in Early Solar System can be Explained as Galactic Background

Trappitsch+ (2018)

Stardust grains: Tracing Stellar Nucleosynthesis

Observations of Live ⁹⁹Tc in AGB Stars

SPECTROSCOPIC OBSERVATIONS OF STARS OF CLASS S

PAUL W. MERRILL MOUNT WIISON AND PALOMAR OBSERVATORIES CARREGIE INSTITUTION OF WASHINGTON CALIFORNIA INSTITUTE OF THEMPOLOOY Received February 27 1952

TABLE 2

INTENSITIES OF LINES AND BANDS

			А	BSORFIE	N		EMISSION							
STAR	PLATE	ZrO	TiO	Ba 11	Low- Temp.	<i>Tc</i> 1	H	Fe 11	<i>М</i> £ 1	Si 1	In 1	Co 1		
R And	Ce 3522	8	3	5	8	4	10	3	2	3	3	2		
U Cas	Pc 127	7	7	5	Ğ	3	10	3	1	3	1	2		
HD 22649.	Pc 192	2	2	5	6	1	0	Ō	Ō	ō	Ō	ō		
R Gem	Pc 68	5	0	10	7	5	10	3	2	2	3	3		
S UMa	Pc 110	1	0	7	4	1	10	3	1	2	1	1		
T Sgr	Pc 124	7	0	7	5	3	10	3	2	3	4	3		
R Cyg	Pc 137	10	0	10	5	3	10	2	2	2	2	3		
AA Cyg	Pc 115	8	7	7	8	4	0	0	0	0	0	0		
Z Del	Pc 112	2	7	3	3	1	10	3	1	2	0	2		
χ Cyg	Ce 3762	5	20	3	10	- 3	10	3	2	5	4	2		
a Cet	∫Ce 4109	1	15	1	7	2	5	1	0	2	1	0		
0 000	Ce 5925	1	10	2	6	1	10	3	1	2	0	1		
R Hya	Ce 3390	1	15	3	7	1	7	3	1	3	0	1		
R Leo	Pc 40	0	20	1	10	0	10	4	4	6	3	0		

Enhancements in ⁹⁹Ru in Presolar Stardust (Savina+, 2004)

- $\bullet\,$ Ruthenium isotopic composition measured in $\mu m\mbox{-sized}$ SiC grains by RIMS
- Comparison with slow neutron capture process models
 - ${}^{101}\text{Ru}/{}^{100}\text{Ru}$ agrees with models
 - 99 Ru/ 100 Ru elevated due to in-situ decay of 99 Tc
- Measurements require in-situ decay of ⁹⁹Tc
- Proof that these grains come from AGB stars (stars of class S)
- Many further measurements since
 - Stellar nucleosynthesis
 - Galactic chemical evolution

Enhancements in ⁹⁹Ru in Presolar Stardust (Savina+, 2004)

- $\bullet\,$ Ruthenium isotopic composition measured in $\mu m\mbox{-sized}$ SiC grains by RIMS
- Comparison with slow neutron capture process models
 - ¹⁰¹Ru/¹⁰⁰Ru agrees with models
 - 99 Ru/ 100 Ru elevated due to in-situ decay of 99 Tc
- Measurements require in-situ decay of ⁹⁹Tc
- Proof that these grains come from AGB stars (stars of class S)
- Many further measurements since
 - Stellar nucleosynthesis
 - Galactic chemical evolution

Enhancements in ⁹⁹Ru in Presolar Stardust (Savina+, 2004)

- Ruthenium isotopic composition measured in µm-sized SiC grains by RIMS
- Comparison with slow neutron capture process models
 - ${}^{101}\text{Ru}/{}^{100}\text{Ru}$ agrees with models
 - 99 Ru/ 100 Ru elevated due to in-situ decay of 99 Tc
- Measurements require in-situ decay of ⁹⁹Tc
- Proof that these grains come from AGB stars (stars of class S)
- Many further measurements since
 - Stellar nucleosynthesis
 - Galactic chemical evolution

- Surface Chemistry
 - Oxidation state of U
 - Enabled by low-lying state
- Nuclear forensics
 - Verification
 - Attribution
- Radionuclides in the environment
 - Tracing nuclear accidents
 - Study remediation measures
- Medical applications
 - Ca metabolism
 - Drug uptake

• . . .

- Surface Chemistry
 - Oxidation state of U
 - Enabled by low-lying state
- Nuclear forensics
 - Verification
 - Attribution
- Radionuclides in the environment
 - Tracing nuclear accidents
 - Study remediation measures
- Medical applications
 - Ca metabolism
 - Drug uptake

. . .

Savina+ (2018)

- Surface Chemistry
 - Oxidation state of U
 - Enabled by low-lying state
- Nuclear forensics
 - Verification
 - Attribution
- Radionuclides in the environment
 - Tracing nuclear accidents
 - Study remediation measures
- Medical applications
 - Ca metabolism
 - Drug uptake

• . . .

- Surface Chemistry
 - Oxidation state of U
 - Enabled by low-lying state
- Nuclear forensics
 - Verification
 - Attribution
- Radionuclides in the environment
 - Tracing nuclear accidents
 - Study remediation measures
- Medical applications
 - Ca metabolism
 - Drug uptake

• . . .

⁹⁹Tc in pisum sativum (Mandel+, 2022)

Further Applications

And there are Many More Uses for RIMS!

- Surface Chemistry
 - Oxidation state of U
 - Enabled by low-lying state
- Nuclear forensics
 - Verification
 - Attribution
- Radionuclides in the environment
 - Tracing nuclear accidents
 - Study remediation measures
- Medical applications
 - Ca metabolism
 - Drug uptake

• . . .

Denk+ (2006)

Isobar separation

Simultaneous Measurements of Iron and Nickel

Isobar separation

Simultaneous Measurements of Iron and Nickel

Multi-Element Analysis Avoiding Isobaric Overlap

Simultaneous Sr, Zr, and Mo analysis (Shulaker+, 2022)

Signal and Noise: Quasi-Simultaneous Detection and Correction

- Quantitative analysis of noise possible by RIMS
- Signal: Lasers are on-resonance
- Noise: Detune laser to be off resonance
- Quasi-simultaneous
 - Tune additional laser and blink on-/off-resonance
 - Use single laser and electro-optic deflectors (in development)
- Optimal "blinking" rate depends on signal/noise

Mandel+ (2022)

Signal and Noise: Quasi-Simultaneous Detection and Correction

- Quantitative analysis of noise possible by RIMS
- Signal: Lasers are on-resonance
- Noise: Detune laser to be off resonance
- Quasi-simultaneous
 - Tune additional laser and blink on-/off-resonance
 - Use single laser and electro-optic deflectors (in development)
- Optimal "blinking" rate depends on signal/noise

Full Disclosure — Limitations of RIMS

- Count rate limitations significantly limit the dynamic range
 - Narrowband cw lasers can be used in special cases to increase dynamic range
 - Example: ⁴¹Ca/⁴⁰Ca analysis
- Duty cycle compared to SIMS: $\sim 10^{-4}$
- Desorption laser coupling depends on material and wavelength
 - Choose the right wavelength and pulse width
- Sample material might come off as molecules
 - In-vacuo surface chemistry

Denk+ (2006)

Full Disclosure — Limitations of RIMS

- Count rate limitations significantly limit the dynamic range
 - Narrowband cw lasers can be used in special cases to increase dynamic range
 - Example: ⁴¹Ca/⁴⁰Ca analysis
- Duty cycle compared to SIMS: $\sim 10^{-4}$
- Desorption laser coupling depends on material and wavelength
 - Choose the right wavelength and pulse width
- Sample material might come off as molecules
 - In-vacuo surface chemistry

Full Disclosure — Limitations of RIMS

- Count rate limitations significantly limit the dynamic range
 - Narrowband cw lasers can be used in special cases to increase dynamic range
 - Example: ⁴¹Ca/⁴⁰Ca analysis
- Duty cycle compared to SIMS: $\sim 10^{-4}$
- Desorption laser coupling depends on material and wavelength
 - Choose the right wavelength and pulse width
- Sample material might come off as molecules
 - In-vacuo surface chemistry

Hiden Analytical IG20

- Small, atom-limited samples
- Spot size:
 - $\bullet~<100\,\text{nm}$ ion gun
 - $\sim 1\,\mu\text{m}$ desorption laser
- \bullet High useful yield: Up to $\sim 40\%$ (U)
- $\bullet\,$ Isotope ratio uncertainties $\gtrsim 2 \%$
- Isobar suppresion and separation
- Quantitavive background measurement

RIMS: An ultra-sensitive technique that is complementary to, e.g., NanoSIMS

Presolar SiC grain

- Small, atom-limited samples
- Spot size:
 - \bullet < 100 nm ion gun
 - $\sim 1\,\mu\text{m}$ desorption laser
- \bullet High useful yield: Up to $\sim 40\%$ (U)
- $\bullet\,$ Isotope ratio uncertainties $\gtrsim 2 \%$
- Isobar suppresion and separation
- Quantitavive background measurement

RIMS: An ultra-sensitive technique that is complementary to, e.g., NanoSIMS

Laser cavity on CHILI

- Small, atom-limited samples
- Spot size:
 - \bullet < 100 nm ion gun
 - $\sim 1\,\mu\text{m}$ desorption laser
- \bullet High useful yield: Up to $\sim 40\%$ (U)
- $\bullet\,$ Isotope ratio uncertainties $\gtrsim 2 \%$
- Isobar suppresion and separation
- Quantitavive background measurement
- RIMS: An ultra-sensitive technique that is complementary to, e.g., NanoSIMS

Н		A RIMS Periodic Table															He
Li	Be	Be accessible by RIMS												Ν	0	F	Ne
Na	Mg	g published RIMS isotopic measurements											Si	Ρ	S	CI	Ar
ĸ	Са	Sc	Ti	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	-	Xe
Cs	Ва	*	Hf	Та	w	Re	Os	lr.	Pt	Au	Hg	т	Pb	Bi	Po	At	Rn
Fr	Ra	**															
								0	-	0.4					T		1
		*	ца	Ce	Pr	NC	۲m	эm	EU	Ga	1D	ЪУ	по	er	i m	TD	LU
		**	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Savina and Trappitsch (2021)

- Small, atom-limited samples
- Spot size:
 - \bullet < 100 nm ion gun
 - $\sim 1\,\mu\text{m}$ desorption laser
- \bullet High useful yield: Up to $\sim 40\%$ (U)
- $\bullet\,$ Isotope ratio uncertainties $\gtrsim 2 \%$
- Isobar suppresion and separation
- Quantitavive background measurement

RIMS: An ultra-sensitive technique that is complementary to, e.g., NanoSIMS

LION at LLNL

Collaborators

Lawrence Livermore National Laboratory

- Mike Savina
- Brett Isselhardt
- Ziva Shulaker
- David Willingham
- Mike Kristo

More Information...

- reto.trappitsch@epfl.ch
- https://galactic-forensics.space

- Andy Davis
- Thomas Stephan
- Mike Pellin