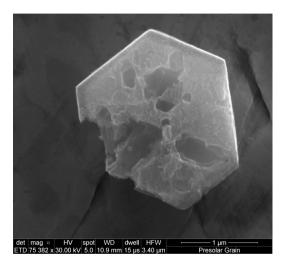
Resonance Ionization Mass Spectrometry

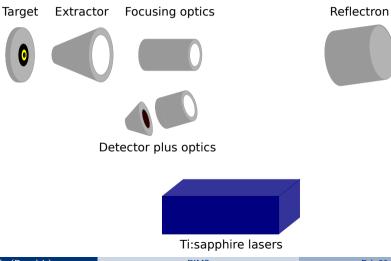

Reto Trappitsch

Brandeis

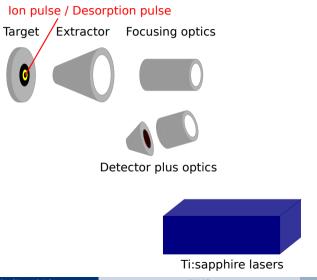
February 28, 2022

RIMS — A Versatile Technique for Trace Element Analyses

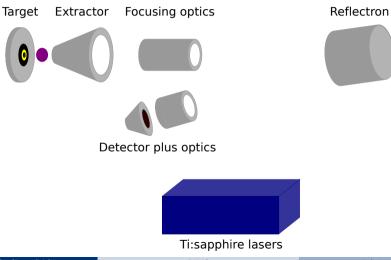
- High sensitivity for small, atom-limited samples
- Minimal sample preparation
- Resonance ionization with tunable Ti:Sapphire lasers
- High spatial resolution
 - $\bullet~\sim 1\,\mu m$ for laser desorption
 - $\bullet~<100\,nm$ for ion sputtering
- High useful yield
 - 38% for U analysis (Savina+ 2018)
 - $\sim 18\%$ for Ti analysis (Trappitsch+ 2018)
- Low backgrounds and high isobar suppression


A RIMS Table of Elements

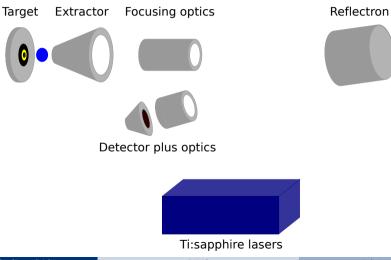
Н	A RIMS Periodic Table														He		
Li	Be		accessible by RIMS published RIMS studies										С	Ν	0	F	Ne
Na	Mg		published RIMS isotopic measurements									AI	Si	Ρ	ŝ	CI	Ar
к	Са	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	—	Хе
Cs	Ba	*	Hf	Та	₹	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	**															

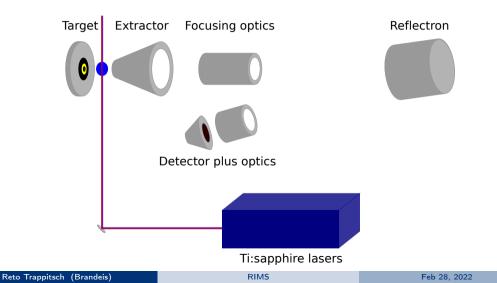

*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
**	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

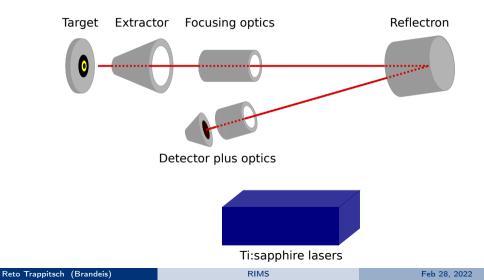
Savina and Trappitsch (2021)

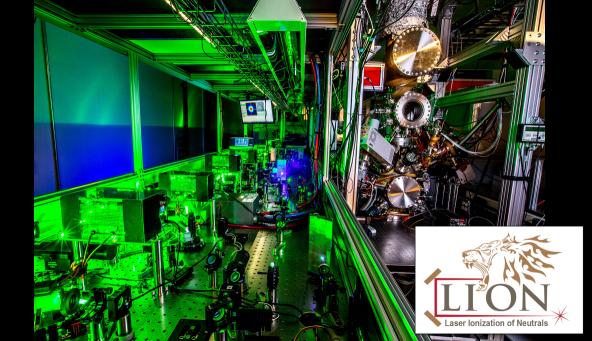

3/17

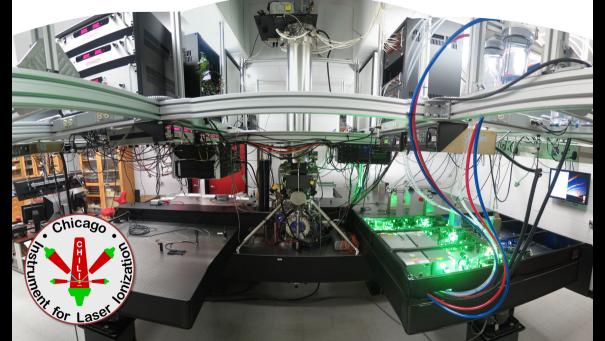
Reto Trappitsch (Brandeis)

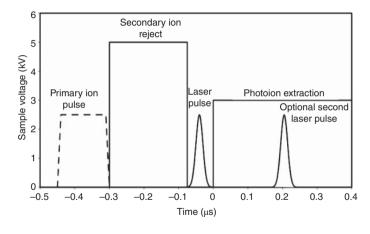



Reflectron




Reto Trappitsch (Brandeis)


Target Extractor Focusing optics Reflectron Detector plus optics **Ti:sapphire lasers**



Measurement Cycles repeat at 1 kHz

- Desorption / Sputtering of sample
- e Ejection of secondary ions
- Resonance ionization of photoions
- Extraction
- Mass / Charge separation and detection

Optional second ionization laser pulse allows for separation of isobars

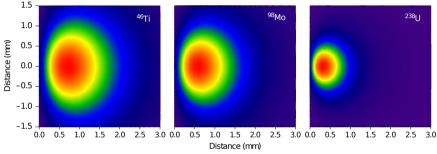
Savina and Trappitsch (2021)

Sample Removal: Sputtering vs. Laser Desorption

- Sputtering with Ga ion beam
 - $< 50 \, \text{nm}$ spatial resolution
 - Motionless blanking required
 - Trade off beteween high current or high spatial resolution
 - $\bullet\,$ Duty cycle compared to SIMS: $\sim 10^{-4}$
- Desorption laser
 - Various wavelength possible to couple with different materials
 - $\bullet\,$ Spot-size down to around $1\,\mu m$
 - Very low secondary ion backgrounds can be achieved

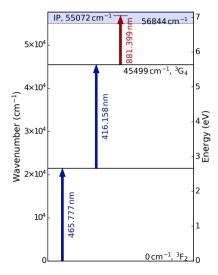
Ionoptica IOG-25Ga

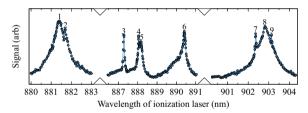
Sample Removal: Sputtering vs. Laser Desorption


EKSPLA 1064 nm Desorption Laser

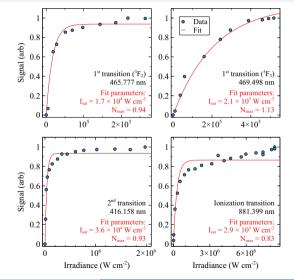
- Sputtering with Ga ion beam
 - $< 50 \, \text{nm}$ spatial resolution
 - Motionless blanking required
 - Trade off beteween high current or high spatial resolution
 - Duty cycle compared to SIMS: $\sim 10^{-4}$
- Desorption laser
 - Various wavelength possible to couple with different materials
 - $\bullet\,$ Spot-size down to around $1\,\mu m$
 - Very low secondary ion backgrounds can be achieved

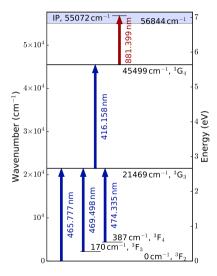
Details Sample Removal


Ionizing of Neutral Atoms: You only get One Chance!

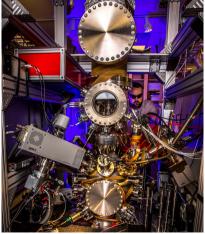

Savina and Trappitsch (2021)

- ullet lonization laser beam size: $\sim 1.5\,{
 m mm}$ diameter cylinder
- Laser intercepts cloud of neutrals above sample surface
- Neutrals that do not get ionized in first shot will be lost due to cloud expansion


- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

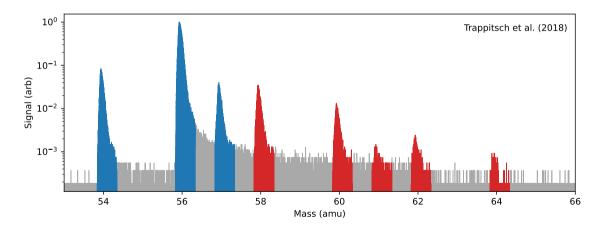

- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

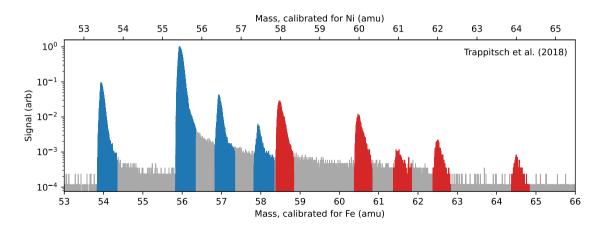

- Resonance Ionization of Titanium requires three lasers
- Each ionization step is highly selective
- Ionization schemes need to be tested:
 - Spectroscopy of states above ionization potential
 - Saturation: Irradiance counts!
- Ti has low lying states
 - Understand population of these states
 - Scheme specific
 - Here: majority after sputtering in ground state

Separation of m/q in Time-of-Flight (TOF) Mass Analyzer

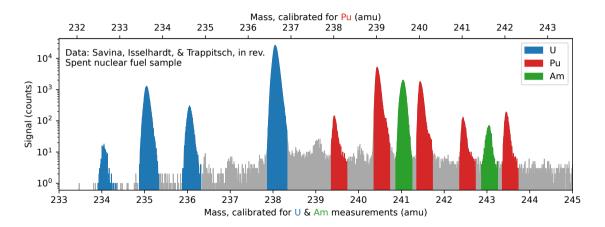
- Time of Flight Mass Analyzer
 - $\bullet~\sim 3.5\,m$ flight path
 - Grid-less reflectron to optimize transmission
 - Mass resolution $\frac{m}{\Delta m} > 1000$
- Difficulty: Map a photoion volume in time onto detector
- Lasers however take care of isobars


Ion Counting — Record every Arrival Time

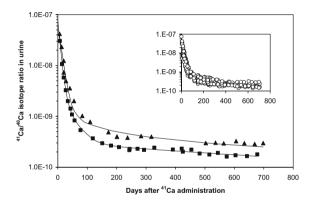
- Ion counting detectors
 - Microchannel plate detectors (MCPs)
 - TOF Electron Multipliers
- Time-to-Digital Conversion: 80 ps time resolution
- $\bullet\,$ Overall system dead-time: $\,\sim\,$ 700 ns
- Reasonable count rates: $\sim 2,000\,\text{cps}$


Results

Simultaneous Measurements of Iron and Nickel


Results

Simultaneous Measurements of Iron and Nickel


Results

Multi-Element Analysis avoiding isobaric overlap

Full Disclosure — Limitations of RIMS

- Count rate limitations significantly limits the dynamic range
 - Narrowband lasers can be used in special cases to increase dynamic range
 - Example: ⁴¹Ca/⁴⁰Ca analysis
- Ionization laser pulse width $\sim 20\,\text{ns:}$ \rightarrow Duty cycle $\sim 10^{-5}$
- Desorption laser coupling depends on material and wavelength
 - Choose the right wavelength and pulse width
- Sample material is removed as molecule
 - In-vacuo surface chemistry

Denk et al. (2006)

Full Disclosure — Limitations of RIMS

- Count rate limitations significantly limits the dynamic range
 - Narrowband lasers can be used in special cases to increase dynamic range
 - Example: ⁴¹Ca/⁴⁰Ca analysis
- Ionization laser pulse width $\sim 20\,\text{ns:}$ \rightarrow Duty cycle $\sim 10^{-5}$
- Desorption laser coupling depends on material and wavelength
 - Choose the right wavelength and pulse width
- Sample material is removed as molecule
 - In-vacuo surface chemistry

Full Disclosure — Limitations of RIMS

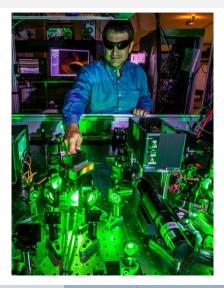
- Count rate limitations significantly limits the dynamic range
 - Narrowband lasers can be used in special cases to increase dynamic range
 - Example: ⁴¹Ca/⁴⁰Ca analysis
- Ionization laser pulse width $\sim 20\,\text{ns:}$ \rightarrow Duty cycle $\sim 10^{-5}$
- Desorption laser coupling depends on material and wavelength
 - Choose the right wavelength and pulse width
- Sample material is removed as molecule
 - In-vacuo surface chemistry

Hiden Analytical IG20

The Next Generation RIMS Instrument

- TOF Mass Spectrometer Optimization
 - Commercial TOF?
 - Optimized home-built TOF?
- Improved laser design and automation
- Ion Imaging
- Cryo-capability to handle biological samples
 - Trace isotopes in tissues, ...
 - Medical labeling with radioactive isotopes

New capabilities, research areas, and higher instrument up-time



Kore Technology SurfaceSeer

The Next Generation RIMS Instrument

- TOF Mass Spectrometer Optimization
 - Commercial TOF?
 - Optimized home-built TOF?
- Improved laser design and automation
- Ion Imaging
- Cryo-capability to handle biological samples
 - Trace isotopes in tissues, ...
 - Medical labeling with radioactive isotopes

New capabilities, research areas, and higher instrument up-time

Thank you!

Acknowledgement

