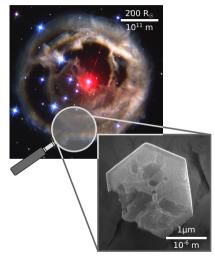
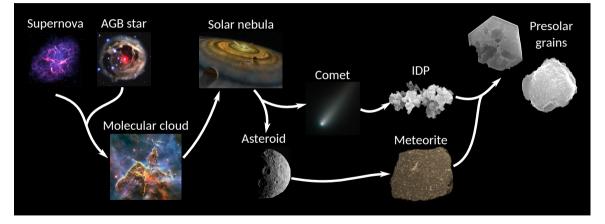
New Opportunities with Stardust

Reto Trappitsch

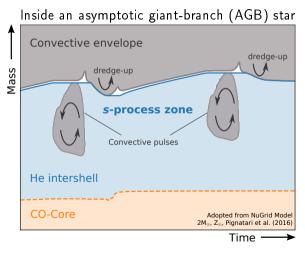

December 2, 2020

Hubble's Diamond in the Dust (Credit: ESA/Hubble & NASA)

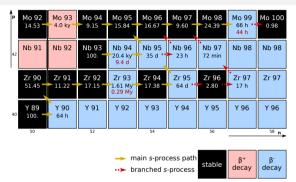

Starry messengers: Stardust in the laboratory

- Stardust grains condensed in the outflows of dying stars
- Grains can be extracted from meteorites
- Composition studied in laboratories to
 - Fingerprint the grain's parent star
 - Trace the formation of new elements
- Analyze isotopic composition with high precision
- Complementary to astronomical observations of elemental compositions
- Caveat: Not all stars produce dust!

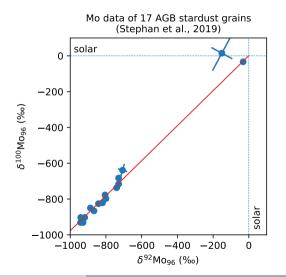
Stardust grains enable hands-on astrophysics studies to decipher the inner workings of their parent stars



The interstellar history of stardust grains

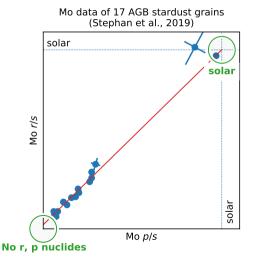

Deciphering the slow neutron capture (s-) process in low-mass stars

- s-process in AGB star takes place in He-intershell, products mixed into envelope
- s-process models have to explain:
 - Observed elemental abundances of AGB star envelopes
 - Isotopic composition of stardust grains
- Most analyzed stardust grains originate form AGB star and thus sample the s-process
- Multiple data sets available to compare to: Zr, Sr, Mo, Ba, ... (see, e.g., Liu et al.)
- Future: Measure multi-element composition of individual stardust grains

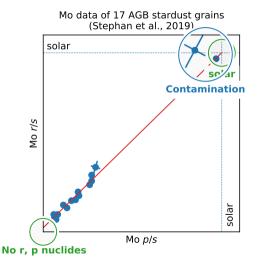

- Recent molybdenum measurements (Stephan et al., 2019)
- Proton- (p) and neutron-rich (r) nuclides destroyed in s-process
- Not all material in the star goes through *s*-processing
- Mo_p/Mo_r composition of all grains solar
- Co-production of p and r nuclides?

Stardust grains allow tracing of minor nucleosynthesis sources that cannot be directly observed.

- Recent molybdenum measurements (Stephan et al., 2019)
- Proton- (p) and neutron-rich (r) nuclides destroyed in s-process
- Not all material in the star goes through *s*-processing
- Mo_p/Mo_r composition of all grains solar
- Co-production of p and r nuclides?


Stardust grains allow tracing of minor nucleosynthesis sources that cannot be directly observed.

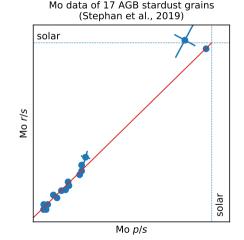
Reto Trappitsch (Brandeis University)


- Recent molybdenum measurements (Stephan et al., 2019)
- Proton- (p) and neutron-rich (r) nuclides destroyed in s-process
- Not all material in the star goes through *s*-processing
- Mo_p/Mo_r composition of all grains solar
- Co-production of p and r nuclides?

Stardust grains allow tracing of minor nucleosynthesis sources that cannot be directly observed.

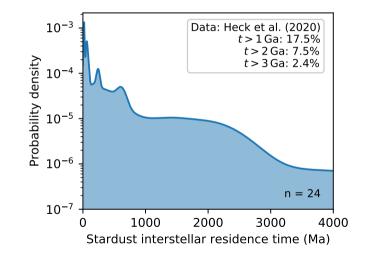
- Recent molybdenum measurements (Stephan et al., 2019)
- Proton- (p) and neutron-rich (r) nuclides destroyed in s-process
- Not all material in the star goes through *s*-processing
- Mo_p/Mo_r composition of all grains solar
- Co-production of p and r nuclides?

Stardust grains allow tracing of minor nucleosynthesis sources that cannot be directly observed.

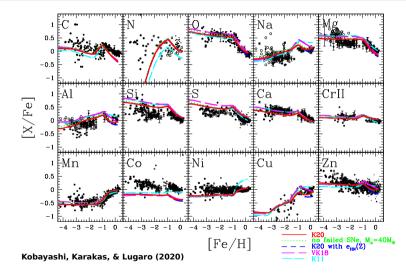


Reto Trappitsch (Brandeis University)

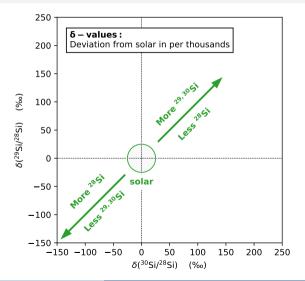
https://galactic-forensics.space

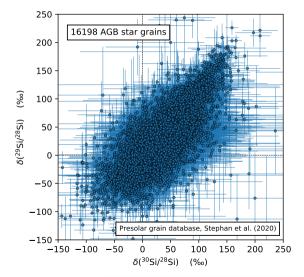

- Recent molybdenum measurements (Stephan et al., 2019)
- Proton- (p) and neutron-rich (r) nuclides destroyed in s-process
- Not all material in the star goes through *s*-processing
- Mo_p/Mo_r composition of all grains solar
- Co-production of p and r nuclides?

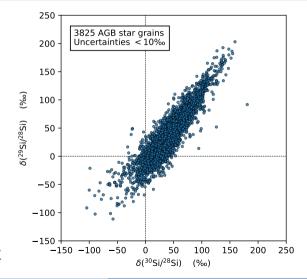
Stardust grains allow tracing of minor nucleosynthesis sources that cannot be directly observed.

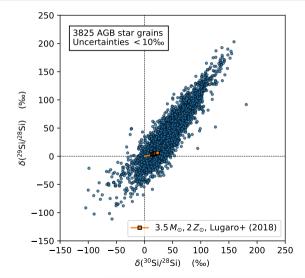


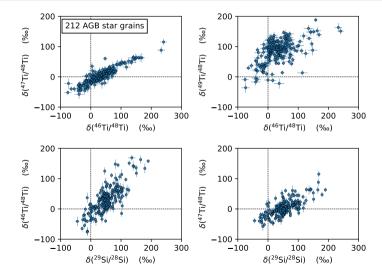
Stardust grains sample up to 3 billion years prior to Solar System formation

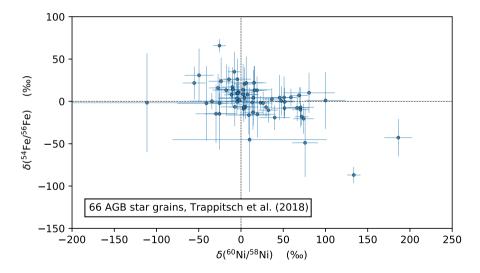

- Measure time stardust grain spent in interstellar medium (Heck et al., 2020)
- Currently small database of "only" 24 grains
- Stardust grains span a range of more than 3 billion years
- Future: Many more measurements for better distribution


"Traditional" galactic chemical evolution (GCE) comparisons

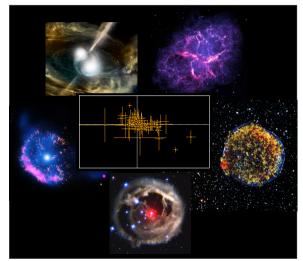

- AGB stardust grains contain complementary information
- $\bullet\,$ Sample \sim 3 Ga of GCE
- Need high-precision measurements!
- Stardust grains enriched in secondary isotopes compared to Solar System
 → Requires heterogeneous GCE
- Future: More targeted multi-element measurements in individual grains


- AGB stardust grains contain complementary information
- ullet Sample \sim 3 Ga of GCE
- Need high-precision measurements!
- Stardust grains enriched in secondary isotopes compared to Solar System
 → Requires heterogeneous GCE
- Future: More targeted multi-element measurements in individual grains


- AGB stardust grains contain complementary information
- ullet Sample \sim 3 Ga of GCE
- Need high-precision measurements!
- Stardust grains enriched in secondary isotopes compared to Solar System
 → Requires heterogeneous GCE
- Future: More targeted multi-element measurements in individual grains


- AGB stardust grains contain complementary information
- ullet Sample \sim 3 Ga of GCE
- Need high-precision measurements!
- Stardust grains enriched in secondary isotopes compared to Solar System
 → Requires heterogeneous GCE
- Future: More targeted multi-element measurements in individual grains

Abundant GCE dominated elements in AGB stardust grains



Less abundant iron and nickel require improved techniques

Stardust: Additional messengers for astrophysics!

- Stardust grain enable studying:
 - Individual nucleosynthesis sources
 - GCE over \sim 3 Ga prior to Solar System
- Benefits of stardust analyses
 - Study otherwise inaccessible areas of interest
 - High-precision stellar measurements
- Current bottlenecks & the future:
 - High-precision trace-element measurements limited to few laboratories
 - More integration with astronomy and astrophysics
 - Targeted, multi-element studies of many individual stardust grains

